自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 【Leetcode题目13】罗马数字转整数

通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4。同样地,数字 9 表示为 IX。C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。给定一个罗马数字,将其转换成整数。

2024-10-24 11:49:19 313

原创 【Leetcode题目09】回文数

【代码】【Leetcode题目09】回文数。

2024-10-23 21:55:05 211

原创 【Leetcode题目01】两数之和

【代码】【Leetcode题目01】两数之和。

2024-10-22 15:01:19 141

原创 MRI的原始空间——K-Space

所以,如果相位编码方向分辨率越高(矩阵越多,阵列越多),就等于采集的相位编码线越多,每一次填充一条相位编码线,相位编码梯度都会变化,都会经过一个TR时间,这样的话扫描时间就和相位编码步级(填充到K空间的相位编码线)有关。而在频率编码方向,一次采集的采样点越多,频率编码方向的阵列就越多,频率编码方向的分辨率越高。这里什么叫共轭对称呢?因为每次相位编码梯度会变化,在K空间中心的时候,不施加相位编码梯度(相位编码梯度为0),在两边分别依次递增相位编码梯度,但是两边的方向相反,所以在相位编方向,K空间也是对称的。

2024-04-22 22:04:33 1652

原创 K-space性质以及基于DM的MRI影像加速论文汇总(一)

然而,现有的VP-SDE可以被视为最大化要重建的MR图像的能量,并且可能导致SDE序列发散。此外,基于 VE 和 VP-SDE 的模型都存在耗时的采样过程,导致重建时间较长。在公开的 fastMRI 数据集上的实验表明,基于 HFS-SDE 的重建方法在重建精度方面优于并行成像、监督深度学习以及现有的基于 VE 和 VP-SDE 的方法。它还提高了MR重建的稳定性并加速了反向扩散的采样过程。SPIRiT通过自校准的方式,结合图像重建和校准的数据,来提供一致的解决方案,适用于任意K空间采样模式的图像重建。

2024-04-13 23:33:55 923 1

原创 头部姿态估计--HeadDiff: Exploring Rotation Uncertainty With Diffusion Models for Head Pose Estimation

本文提出了一种概率回归扩散模型用于头部姿态估计,称为HeadDiff,该模型特别针对旋转不确定性进行了处理,尤其是在野外条件下捕捉到的面部图像。与传统的图像到姿态的方法不同,这些方法无法明确建立头部姿态的旋转流形,HeadDiff旨在通过扩散过程确保姿态旋转,并同时迭代地细化映射过程。具体来说,最初将头部姿态估计问题形式化为一个反向扩散过程,定义了一个在流形上逐步去噪的范式,通过将大的差距分解为中间步骤来探索不确定性。此外,HeadDiff通过编码旋转表示中的不相干信息,配备了各向同性高斯分布。

2024-04-08 15:08:14 908 1

原创 score-based model论文解读

*参考视频:[B站score-based model讲解](https://www.bilibili.com/video/BV1VP411u71p/)论文原文:[Generative Modeling by Estimating Gradients of the Data Distribution](https://arxiv.org/abs/1907.05600)本文提出了一个全新的生成模型,不是直接学习数据的分布,而是通过预测数据分布的对数梯度(即score分数)来构建一个生成模型。

2024-04-07 18:05:57 1013

原创 OpenSeeD:A Simple Framework for Open Vocabulary Segmentation and Detection代码复现

(2)解压后,将压缩包中的两个文件夹放置到你当前包的安装环境中,例如,我新建虚拟环境OpenSee,在该环境下我的包安装目录为(一般在当前环境的路径下的Lib文件夹中的site-packages路径下)命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python。命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple timm==0.4.12。

2024-02-28 10:47:13 1197

原创 Jupyter Notebook的安装与基本使用方法

Jupyter Notebook的安装

2023-05-19 00:04:06 482 3

原创 在指定目录下建立conda虚拟环境后发现没有环境名的解决方法

建立conda虚拟环境后发现没有环境名

2023-05-18 22:33:36 1956 7

原创 配置深度学习环境:在Windows中安装CUDA,Pytorch GPU版本

配置深度学习环境

2023-05-18 21:28:39 1859 1

原创 PointCNN:Convolution On X-Transformed Points

PointCNN: 经过X变换后的点的卷积摘要总结我们提出一种从点云中学习特征的通用框架。CNN网络成功的关键是卷积操作,它可以利用网格中密集数据在局部空间上的相关性(比如:图片)。然而,点云是不规律且无序的,因此,直接对点的特征进行卷积,会导致形状信息和点排列多样性的损失。我们提出通过在输入点云中学习X-转换,以此改善两个问题:(1)输入点特征的权重(2)将点排列为潜在、规范的顺序。我们将典型卷积操作符的乘与和运算,应用在X-转换后的特征上。介绍总结局部空间相关性是在多种数据普遍存在的性质,独立于

2022-01-28 18:28:30 4523

原创 PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet:Deep Learning on Point Sets for 3D Classification and SegmentationPointNet:3D点集分类与分割深度学习模型摘要总结:1.点云是一个重要的数据结构,所以有研究的必要。2.点云有自己本身的特性,也就是 irregular format(格式不规则),之前的研究人员都想将其转化为一种立体模型,但是这恰恰是丢失了其本身的特性。机器学习,先要提取信息,之后再将提取到的信息进行分析得出结果。我个人理解这里有一个问题就是

2022-01-14 10:16:35 1241

原创 EBM(基于能量的模型)

根据目前学习论文”Generative PointNet: Deep Energy-Based Learning on Unordered Point Sets for 3D Generation, Reconstruction and Classification“是关于能量的无序点集的深度学习三维生成、重建和分类。论文中涉及的神经网络中的能量函数值越小,系统越趋于稳定。所以在机器学习中E(x)通常可以表示为似然函数,故求最大似然就可以被表示为求最小能量...

2021-11-02 20:24:30 3606 1

原创 MCMC(二)马尔科夫链

1.马尔科夫链概述它假设谋一时刻状态转移的概率只依赖于它的前一个状态,因此马尔科夫链在很多时间序列模型中的得到广泛的应用,比如循环神经网络RNN、隐式马尔科夫模型HMM、以及MCMC2.马尔科夫链模型状态转移矩阵的性质例:其中若采用[0.7,0.1,0.2]作为初始概率分布,然后这个状态作为序列概率分布的初始状态t0,将其带入这个状态转移矩阵计算t1,t2,t3…的状态。代码如下:matrix = np.matrix([[0.9,0.075,0.025],[0.15,0.8,0.05],[0.25,

2021-11-02 18:57:18 448

原创 error: parsing file ‘/var/lib/dpkg/updates/0036’ near line 0: 在字段名 #padding 中发现换行符

error: parsing file ‘/var/lib/dpkg/updates/0036’ near line 0: 在字段名 #padding 中发现换行符今天重新安装Ubuntu系统,在进行sudo apt install gcc 安装命令后,出错:error: parsing file ‘/var/lib/dpkg/updates/0036’ near line 0: 在字段名 #padding 中发现换行符耽误了很长时间,以下找到方法:解决方法:1.打开终端,输入命令,看看有啥遗留

2021-10-10 21:07:45 620

原创 Eclipse中怎样将java项目转化为web项目?

Eclipse中怎样将java项目转化为web项目?最近学习在Eclipse中如何将java文件转化为web文件,在此总结以下实践过程,供大家参考。第一步:首先要在Eclipse中导入即将要执行的项目,打开Eclipse后点击菜单栏中"File",选择import选项第二步:单击"Import"之后,选择第一个选项"General",之后选择”Existing Projects into Workspace"第三步:选中你即将打开项目文件的位置,并在下方勾选"copy pr...

2021-09-17 23:15:46 5257 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除