配置深度学习环境:在Windows中安装CUDA,Pytorch GPU版本

本文介绍了如何在Anaconda中创建Python3.9的虚拟环境d2l,并指导如何检查和更换源,确保顺利安装CUDA和Pytorch的GPU版本。通过NVIDIA控制面板和命令行工具nvidia-smi确定适配的CUDA版本,然后按照步骤安装CUDA。接着,文章说明了如何选择和安装适合CUDA版本的Pytorch,验证CUDA和Pytorch的安装成功,并检查Pytorch是否能使用GPU。
摘要由CSDN通过智能技术生成

安装须知:先从创建虚拟环境说起~

  1. 在Anaconda中创建python版本为3.9,名称为d2l的虚拟环境
conda create --name d2l python=3.9 -y

补充:查看base下所有的虚拟环境conda env list
虚拟环境创建之后成功,出现以下提示信息:
在这里插入图片描述
查看base环境下目前安装的包:conda list
虚拟环境创建之后,进入并激活虚拟环境:conda activate d2l
在这里插入图片描述注:在下载pytorch时,首先要查看该虚拟环境中的源是否为清华源,否则可能后期会因为是国外的源导致下载失败。
查看源命令:pip3 config list
在这里插入图片描述

  1. 安装Cuda
    首先需要查看适配Driver的Cuda版本
    电脑中只要有GPU就已安装了Driver,默认已经安装Nvidia GPU Driver
    桌面–》鼠标右键–》NVIDIA控制面板
    在这里插入图片描述
    NVIDIA控制面板–》系统信息
    在这里插入图片描述
    组件–》NVCUDA64.DLL在产品名称栏可以看到CUDA 12.1.107 driver
    故我的电脑适配的是Cuda 12.1及以下的版本
    在这里插入图片描述
    查看适配Cuda版本还有另外一种方法:打开命令提示符–》输入nvidia-smi
    在这里插入图片描述
  2. 选择对应的CUDA
    查看自身显卡的算力,在此网站中搜索显卡型号,可以看到我的显卡对应的算力是6.1
    在这里插入图片描述
    查看显卡算力支持的CUDA版本
    在这里插入图片描述
    算力6.1支持的CUDA版本有以上。所以我在选择的时候需要选择以上的版本并且小于12.1
    安装Cuda详细教程可以参考这篇博客:cuda安装详细教程
  3. 验证Cuda是否安装成功
    使用以下命令,出现版本信息即代表安装成功nvcc -V
    在这里插入图片描述
  4. 安装Pytorch GPU版本
    在安装之前建议将源换为清华源或者其他源,加快下载过程

进入Pytorch官网 下载Pytorch
带有CUDA字样的就是GPU版本,则选择CUDA小于12.1的版本
首先在Anaconda中先激活需要安装pytorch的环境,在这里是我之前创建过名为d2l的虚拟环境,conda activate d2l

在官网中可以查看Pytorch的历史版本
在这里插入图片描述
在这里选择安装1.13.0的Pytorch,选择CUDA11.7的版本
在这里插入图片描述
复制该命令到anaconda中,回车执行
出现以下界面表示安装成功
在这里插入图片描述
使用命令查看该虚拟环境下已安装的包conda list
在这里插入图片描述

  1. 检查Pytorch是否安装成功
    我们输入python进入Python环境,然后输入import torch,如果没有报错说明可以导入成功。
    在这里插入图片描述
    输入torch.cuda.is_available()查看torch是否可以使用显卡,True就代表可以!
    在这里插入图片描述
    安装好Pytorch环境后,我们就可以来部署运行深度学习算法啦。完结撒花~~
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值