score-based model介绍
参考视频:[B站score-based model讲解](https://www.bilibili.com/video/BV1VP411u71p/)
论文原文:[Generative Modeling by Estimating Gradients of the Data Distribution](https://arxiv.org/abs/1907.05600)
摘要:
本文提出了一个全新的生成模型,不是直接学习数据的分布,而是通过预测数据分布的对数梯度(即score分数)来构建一个生成模型。score-based model的核心是如何估计score,并且求得score如何进行图片生成。
相关工作:
(1)likelihood-based models:
- 直接对数据分布进行拟合(给定一张图片,要求输出图片和这张图片完全一样)
- 举例:VAE
- 缺点:对于网络结构的设计有很大限制
(2)implicit generative models:
- 间接对数据分布进行拟合(输出的图片,经过判别,应该落在目标分布内)
- 举例:GANs
- 缺点:需要对抗学习,不好训练,容易崩塌
本文提出了一种新的生成模型,即score-based model。首先通过score-matching来估计数据的对数梯度(即score