score-based model论文解读

score-based model介绍

参考视频:[B站score-based model讲解](https://www.bilibili.com/video/BV1VP411u71p/)
论文原文:[Generative Modeling by Estimating Gradients of the Data Distribution](https://arxiv.org/abs/1907.05600)

摘要:

本文提出了一个全新的生成模型,不是直接学习数据的分布,而是通过预测数据分布的对数梯度(即score分数)来构建一个生成模型。score-based model的核心是如何估计score,并且求得score如何进行图片生成。

相关工作:

(1)likelihood-based models:

  • 直接对数据分布进行拟合(给定一张图片,要求输出图片和这张图片完全一样)
  • 举例:VAE
  • 缺点:对于网络结构的设计有很大限制

(2)implicit generative models:

  • 间接对数据分布进行拟合(输出的图片,经过判别,应该落在目标分布内)
  • 举例:GANs
  • 缺点:需要对抗学习,不好训练,容易崩塌

本文提出了一种新的生成模型,即score-based model。首先通过score-matching来估计数据的对数梯度(即score࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值