给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
朋友们好啊,好久没更新了,最近数据结构图这部分学的很吃力。。主要是因为浙大上的建图的结构个人感觉好多,又要定义图节点,又要边节点,又想偷懒玩其他的事儿,所以这次我就老老实实的写了一遍邻接矩阵的建图过程。(昨天刚考了转专业考试,希望能顺利吧,还有就是这门课要结课了,但是我还有好多不会,看来只有等到暑假的时候刷题了,话说这月29号还有两门考试,啧啧)
对基础的知识的掌握真的很重要(譬如这题要用的队列),我觉得应该把重要的代码都记下来,不能光知道原理,却不知道怎么写,知道怎么写也是很重要的。
#include <stdio.h>
#include <stdlib.h>
#define max 100
#define infinity -1
#define true 100
#define false 99
typedef struct GNode *PtrToGNode;
struct GNode
{
int Nv;
int Ne;
int G[max][max];
};
typedef PtrToGNode MGraph;
typedef struct ENode *PtrToENode;
struct ENode
{
int v1, v2;
};
typedef PtrToENode Edge;
MGraph createGraph(int VNum)
{
MGraph G;
G = (MGraph)malloc(sizeof(struct GNode));
G->Nv = VNum;
G->Ne = 0;
int v1, v2;
for (v1 = 0; v1 < G->Nv; v1++)
{
for (v2 = 0; v2 < G->Nv; v2++)
{
G->G[v1][v2] = infinity;
}
}
return G;
}
void insertEdge(MGraph G, Edge E)
{
G->G[E->v1][E->v2] = 1;
G->G[E->v2][E->v1] = 1;
}
MGraph BuildGraph()
{
MGraph G;
Edge E;
int VNum;
int i;
scanf("%d", &VNum);
G = createGraph(VNum);
scanf("%d", &G->Ne);
for (i = 0; i < G->Ne; i++)
{
E = (Edge)malloc(sizeof(struct ENode));
scanf("%d%d", &E->v1, &E->v2);
insertEdge(G, E);
}
return G;
}
int visited_DFS[20], visited_BFS[20];
void Print(int V)
{
printf(" %d", V);
}
void DFS(MGraph G, int V)
{
visited_DFS[V] = true;
Print(V);
for (int i = 0; i < G->Nv; i++)
{
if (G->G[V][i] != infinity && visited_DFS[i] == false) //有边,且没被访问过
{
DFS(G, i);
}
}
}
void List_DFS(MGraph G)
{
int i;
for (i = 0; i < G->Nv; i++)
{
if (visited_DFS[i] == false)
{
printf("{");
DFS(G, i);
printf(" }\n");
}
}
}
typedef struct Node *PtrToNode;
struct Node
{
int data;
PtrToNode next;
};
struct QNode
{
PtrToNode F, R;
};
typedef struct QNode *Queue;
Queue createQ()
{
Queue Q;
Q = (Queue)malloc(sizeof(struct QNode));
Q->F = Q->R = NULL;
return Q;
}
void enq(Queue Q, int n)
{
PtrToNode Node;
Node = (PtrToNode)malloc(sizeof(struct Node));
Node->data = n;
Node->next = NULL;
if (Q->F == NULL)
{
Q->F = Q->R = Node;
}
else
{
Q->R->next = Node;
Q->R = Node;
}
}
int DeQ(Queue Q)
{
int t;
PtrToNode TNode;
TNode = Q->F;
Q->F = Q->F->next;
t = TNode->data;
free(TNode);
return t;
}
int Isempty(Queue Q)
{
return Q->F != NULL ? 0 : 1;
}
void BFS(MGraph G, int n)
{
Queue Q;
Q = createQ();
enq(Q, n);
while (!Isempty(Q))
{
int V = DeQ(Q);
Print(V);
for (int i = 0; i < G->Nv; i++)
{
if (G->G[V][i] != infinity && visited_BFS[i] == false)
{
visited_BFS[i] = true;
enq(Q, i);
}
}
}
}
void List_BFS(MGraph G)
{
int i;
for (i = 0; i < G->Nv; i++)
{
if (visited_BFS[i] == false)
{
visited_BFS[i] = true;//标记访问
printf("{");
BFS(G, i);
printf(" }\n");
}
}
}
int main()
{
MGraph G;
int i;
G = BuildGraph();
for (i = 0; i < G->Nv; i++)
{
visited_DFS[i] = false;
visited_BFS[i] = false;//标记数组一定要自己初始化
}
List_DFS(G);
List_BFS(G);
return 0;
}