目录
3. ConcurrentHashMap的锁分段技术可有效提升并发访问率
2. 初始化segmentShift和segmentMask
一、简介
ConcurrentHashMap 是线程安全并且高效的 HashMap。
本节让我们一起研究下该容器是如何在 保证线程安全的同时又能保证高效的操作。
二、为什么要使用
在并发编程中使用HashMap可能导致程序死循环。
而使用线程安全的HashTable效率又非常低下,
基于以上两个原因,便有了ConcurrentHashMap的登场机会。
1. 线程不安全的HashMap。
在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所 以在并发情况下
不能使用HashMap。
例如,执行以下代码会引起死循环。
HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表 形成环形数
据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。
2. 效率低下的HashTable
HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。
因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状
态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,
所以竞争越激烈效率越低。
3. ConcurrentHashMap的锁分段技术可有效提升并发访问率
HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把
锁,假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么 当多线程访问容器里不同数据段的数据
时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技
术。首先将数据分成一段一段地存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时
候,其他段的数 据也能被其他线程访问。
三、基本结构
通过ConcurrentHashMap的类图来分析ConcurrentHashMap的结构,如下图所示。
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁
(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数 据。一个
ConcurrentHashMap里包含一个Segment数组。
Segment的结构和HashMap类似,是一种 数组和链表结构。一个Segment里包含一个HashEntry数组,每个
HashEntry是一个链表结构的元 素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的
数据进行修改时, 必须首先获得与它对应的Segment锁,如图6-2所示。
四、初始化
ConcurrentHashMap初始化方法是通过initialCapacity、loadFactor和concurrencyLevel等几个参数来初
始化segment数组、段偏移量segmentShift、段掩码segmentMask和每个segment里的HashEntry数组
来实现的。
1. 初始化segments数组
让我们来看一下初始化segments数组的源代码。
由上面的代码可知,segments数组的长度ssize是通过concurrencyLevel计算得出的。为了能 通过按位与
的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方 (power-of-two
size),所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的
长度。假如concurrencyLevel等于14、15或16,ssize都会等于16,即容器里锁的个数也是16。
注意 concurrencyLevel的最大值是65535,这意味着segments数组的长度最大为65536,对应的二进制
是16位。
2. 初始化segmentShift和segmentMask
这两个全局变量需要在定位segment时的散列算法里使用,sshift等于ssize从1向左移位的 次数,在默认情
况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。segmentShift用于定位参与
散列运算的位数,segmentShift等于32减sshift,所以等于28,这里之所 以用32是因为
ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们可以看到这点。
segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最
大长度是65536,所以segmentShift最大值是16,segmentMask最大值是 65535,对应的二进制是16
位,每个位都是1。
3. 初始化每个segment
输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负 载因
子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。
上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,
如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量
threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算
cap等于1,threshold等于零。
4. 定位Segment
既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素 的时候,必
须先通过散列算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变
种算法对元素的hashCode进行一次再散列。
之所以进行再散列,目的是减少散列冲突,使元素能够均匀地分布在不同的Segment上, 从而提高容器的
存取效率。假如散列的质量差到极点,那么所有的元素都在一个Segment中, 不仅存取元素缓慢,分段锁
也会失去意义。笔者做了一个测试,不通过再散列而直接执行散列计算。
计算后输出的散列值全是15,通过这个例子可以发现,如果不进行再散列,散列冲突会非 常严重,因为只
要低位一样,无论高位是什么数,其散列值总是一样。我们再把上面的二进制 数据进行再散列后结果如下
(为了方便阅读,不足32位的高位补了0,每隔4位用竖线分割下)。
可以发现,每一位的数据都散列开了,通过这种再散列能让数字的每一位都参加到散列 运算当中,从而减
少散列冲突。ConcurrentHashMap通过以下散列算法定位segment。
默认情况下segmentShift为28,segmentMask为15,再散列后的数最大是32位二进制数据, 向右无符
号移动28位,意思是让高4位参与到散列运算中,(hash>>>segmentShift)& segmentMask的运算结
果分别是4、15、7和8,可以看到散列值没有发生冲突。
五、基本操作
1. get
Segment的get操作实现非常简单和高效。先经过一次再散列,然后使用这个散列值通过散 列运算定位到
Segment,再通过散列算法定位到元素,代码如下。
get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。我们知道HashTable容器的
get方法是需要加锁的,那么ConcurrentHashMap的get操作是如何做到不加锁的呢?原因是它的get方法里将要
使用的共享变量都定义成volatile类型,如用于统计当前Segement大小的count字段和用于存储值的HashEntry的
value。
定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只
能被单线程写 (有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写 共
享变量count和value,所以可以不用加锁。之所以不会读到过期的值,是因为根据Java内存模 型的happen
before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿
到最新的值,这是用volatile替换锁的经典应用场景。
在定位元素的代码里我们可以发现,定位HashEntry和定位Segment的散列算法虽然一样, 都与数组的长度减去
1再相“与”,但是相“与”的值不一样,定位Segment使用的是元素的 hashcode通过再散列后得到的值的高
位,而定位HashEntry直接使用的是再散列后的值。其目的是避免两次散列后的值一样,虽然元素在Segment里
散列开了,但是却没有在HashEntry里散列开。
2. put
由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须加锁。put方法
首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个 步骤,第一步判断是否需
要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位 置,然后将其放在HashEntry数组
里。
2.1. 是否需要扩容
在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈 值,则对数组进
行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否
已经到达容量的,如果到达了就进行扩容,但是很有可能扩容 之后没有新元素插入,这时HashMap就进行了一次
无效的扩容。
2.2. 如何扩容
在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进行再散列后插入到新的数
组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。
2.3. size操作
如果要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment
里的全局变量count是一个volatile变量,那么在多线程场景下,是不是直接把所有Segment的count相加就可以
得到整个ConcurrentHashMap大小了呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是可
能累加前使用的count发生了变化,那么统计结果就不准了。所以,最安全的做法是在统计size的时候把所有
Segment的put、remove和clean方法 全部锁住,但是这种做法显然非常低效。
因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是
先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如 果统计的过程中,容器的count发生了变
化,则再采用加锁的方式来统计所有Segment的大小。
那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put、
remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生
变化,从而得知容器的大小是否发生变化。