algorithm dayx02
977有序数组的平方
暴力?所有元素平方再sort
这样的话会变成onlogn
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
for(int i=0;i<nums.size();++i){
nums[i]=nums[i]*nums[i];
}
sort(nums.begin(),nums.end());
return nums;
}
};
有一个for就是n 有个sort就是logn 暴力记得for中的边界条件
双指针怎么想呢?
首先它是非递减的
所以可以做双指针 想一下他的平方很有可能负数也大 所以刚好满足双指针
return的是一个新数组 所以先弄个vectornums
class Solution {
public:
vector<int> sortedSquares(vector<int>& nums) {
vector<int>x(nums.size());
int k=nums.size()-1;
for(int i=0,j=nums.size()-1;i<=j;)
{
if(nums[i]*nums[i]<nums[j]*nums[j]){
x[k--]=nums[j]*nums[j];
j--;
}
else {
x[k--]=nums[i]*nums[i];
i++;
}
}
return x;
}
};
时间复杂度on
一定要注意:vectorx(nums.size());这句话后面一定要带括号写nums.size();
209长度最小的子数组
看题目 长度要最小 还得是连续 还得是加起来大于等于target 输出的还是长度
首先觉得 二分不可行 至少还得排序才能二分双指针
return的东西可以设置一个count 遇到就count++
暴力? 应该是两个for循环 on^2 空间o1
滑动窗口 好像类似于双指针
就是说起始位置的指针也得动 不然和暴力没有区别
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
while (sum >= s) {//注意可能要持续向后移动 必须是while
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;//result=min(result,subLength);
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
//sum=sum-nums[i];
//i++;
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
//太秒了 消化一下
59螺旋矩阵2
如果是2开头 那么就是1-2-3-4输出的就是【【1,2】,【4,3】】
n在1和20之间
完全没思路啊?看到矩阵,想到数组,再想到二分法 左右指针 滑动窗口
好像不符合题意
简单的模拟过程题 注意想边界条件
按照【)遍历 第一行就处理第一个到倒数第二个 右一列也是一样
最后一行也一样 第一列也一样 所以满足循环不变量的条件
模拟过程
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};//遍历二维矩阵要on时间