algorithm dayx02

algorithm dayx02

977有序数组的平方

暴力?所有元素平方再sort

这样的话会变成onlogn

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        for(int i=0;i<nums.size();++i){
            nums[i]=nums[i]*nums[i];
        }
        sort(nums.begin(),nums.end());
        return nums;
    }
};

有一个for就是n 有个sort就是logn 暴力记得for中的边界条件

双指针怎么想呢?

首先它是非递减的

所以可以做双指针 想一下他的平方很有可能负数也大 所以刚好满足双指针

return的是一个新数组 所以先弄个vectornums

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        vector<int>x(nums.size());
        int k=nums.size()-1;
        for(int i=0,j=nums.size()-1;i<=j;)
        {
            if(nums[i]*nums[i]<nums[j]*nums[j]){
                x[k--]=nums[j]*nums[j];
                j--;
            }
            else {
                x[k--]=nums[i]*nums[i];
                i++;
            }
        }
        return x;
    }
};

时间复杂度on

一定要注意:vectorx(nums.size());这句话后面一定要带括号写nums.size();

209长度最小的子数组

看题目 长度要最小 还得是连续 还得是加起来大于等于target 输出的还是长度

首先觉得 二分不可行 至少还得排序才能二分双指针

return的东西可以设置一个count 遇到就count++

暴力? 应该是两个for循环 on^2 空间o1

滑动窗口 好像类似于双指针

就是说起始位置的指针也得动 不然和暴力没有区别

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            while (sum >= s) {//注意可能要持续向后移动 必须是while
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;//result=min(result,subLength);
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
                //sum=sum-nums[i];
                //i++; 
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};
//太秒了 消化一下

59螺旋矩阵2

如果是2开头 那么就是1-2-3-4输出的就是【【1,2】,【4,3】】

n在1和20之间

完全没思路啊?看到矩阵,想到数组,再想到二分法 左右指针 滑动窗口

好像不符合题意

简单的模拟过程题 注意想边界条件

按照【)遍历 第一行就处理第一个到倒数第二个 右一列也是一样

最后一行也一样 第一列也一样 所以满足循环不变量的条件

模拟过程

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 1;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};//遍历二维矩阵要on时间
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatsumotoChrikk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值