欧几里得算法

欧几里得算法

  • 欧几里得算法(gcd)又称辗转相除法,是求最大公约数的一种方法。
  • 代码实现:
public static long gcd(long m, long n) {//时间复杂度:O(log n)
        return n == 0 ? m : gcd(n, m % n);
    }
  • lcm算法
    两个整数的最小公倍数与最大公因数之间有如下的关系:
    在这里插入图片描述

  • 代码实现:

public static long lcm(long a, long b) {
        return a * b / gcd(a, b);
    }

裴蜀(贝祖)等式

  • 对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式)
    ax+by=m有整数解时当且仅当m是d的倍数。
    裴蜀等式有解时必然有无穷多个整数解,每组解x、y都称为裴蜀数,可用扩展欧几里得算法(Extended Euclidean algorithm)求得。
  • 方程12x+42y=6有解
  • 特别地,方程 ax+by=1有整数解当且仅当整数a和b互素

扩展欧几里得算法
扩展欧几里得算法就是在求a,b的最大公约数d=gcd(a,b)的同时,求出贝祖等式ax+by=m的一个解(x0,y0)
如何递推?

x=y1
y=x1 - a / b * y1

通解:

x = x0 +(b / gcd )* t       所有的x对b同模
y = y0 -( a / gcd )* t       所有的y对a同模

如果想要得到×大于0的第一个解?

b /= d;x =(x0 % b + b )% b


gcd(a,b)
return b==0?a
我们观察到:欧几里德算法停止的状态是: a’= gcd , b’ = 0 ,(a’,b’是递归最后一层时参数的值)那么,这是否能给我们求解 x y 提供一种思路呢?
a’x + b’y = gcd 此时x=1,y为任意数
因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值
(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a’*1 + b’*0 = gcd

当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得
 a*x + b*y= gcd    ……(1),--->要求的
而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得:
 b*x1 + (a%b)*y1 = gcd (2) ,-->下一个状态
那么这两个相邻的状态之间是否存在一种关系呢?

a%b = k  ==>  a = b*(a/b) +k  "/"舍掉余数的除法 ==> k=a-(a/b)*b
我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

    gcd = b*x1 + (a-(a/b)*b)*y1

        = b*x1 + a*y1 – (a/b)*b*y1

        = a*y1 + b*(x1 – a/b*y1)        ……(3)

对比之前我们的状态,式(3)和式(1):求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

这里:

    x = y1

    y = x1 – a/b*y1

这就是递推式,注意x,y是递归过程中的上一层,x1,y1是下一层(下一个状态)得到的值

扩展欧几里得

 	static long x;
    static long y;
    
    public static long ext_gcd(long a, long b) {
    // 扩展欧几里得
    // 调用完成后x,y是ax+by=gcd(a,b)的解
        if (b == 0) {
            x = 1;
            y = 0;
            return a;
        }
        long res = ext_gcd(b, a % b);
        //x,y已经被下一层递归更新了
        long x1 = x;//备份x
        x = y;//更新x
        y = x1 - a / b * y;//更新y
        return res;
    }

   /**
     * 线性方程
     * ax+by=m 当m时gcd(a,b)倍数时有解
     * 等价于ax = m mod b
     */
    public static long linearEquation(long a, long b, long m) throws Exception {
        long d = ext_gcd(a, b);
        //m不是gcd(a,b)的倍数,这个方程无解
        if (m % d != 0) {
            throw new Exception(m + " % " + "gcd(" + a + "," + b + ")" + " != 0~~无解");
        }
        long n = m / d;//约一下,考虑m是d的倍数
        x *= n;
        y *= n;
        return d;
    }
    //调用完成 下 x,y为最终方程解
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

amant 柒少

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值