目录
1.引言与背景
Lasso回归(Least Absolute Shrinkage and Selection Operator,LASSO)是一种广受欢迎的线性模型正则化方法,由Robert Tibshirani于1996年提出。在传统的线性回归模型基础上,Lasso引入了L1范数作为正则化项,有效地解决了多重共线性问题,促进了特征选择,并有助于提高模型的预测能力和解释性。随着大数据和高维数据分析的兴起,Lasso回归因其在处理稀疏性问题方面的出色表现,成为了机器学习和统计学领域不可或缺的工具。
2.LASSO定理
LASSO回归的核心定理是其在正则化过程中对权重系数的收缩特性。优化目标函数为:
其中,X 代表特征矩阵,y 代表目标变量,w 为待估计的权重向量,n 是样本数量,λ 是正则化强度参数。L1正则化项()使得部分特征的权重系数在优化过程中可能被“挤压”至零,从而实现了特征选择,减少了模型的复杂度。
3.算法原理
Lasso通过在最小化平方误差损失函数的同时,约束模型权重向量的L1范数,达到同时优化模型预测性能和模型复杂度的目的。当λ增大时,模型会倾向于选择较少的特征,因为较大的正则化力度会迫使更多权重系数趋近于零。这种特性使得Lasso回归在处理高维数据和存在大量冗余特征的问题上特别有效。
4.算法实现
在Python的Scikit-Learn库中,可以方便地使用Lasso
类实现Lasso回归。下面是一个基本的实现示例:
Python
# 导入所需的库
import numpy as np
from sklearn impo