【py】【推荐系统】简单的用Pearson系数做菜品推荐系统

载入数据–>整合数据(处理成以每行为一个用户对所有菜品评分的列表)–>Pearson相关系数
–>选取前五十名相关系数用户,加权计算推荐系数
本文参考了csdn另一个作者Charlie1492的文章,贴在这里:
https://blog.csdn.net/qq_19869749/article/details/103595095

什么是Pearson相关系数?

皮尔森相关系数反应了两个变量之间的线性相关程度,它的取值在[-1, 1]之间。反应在图片上大概是这样:(hotmap)
在这里插入图片描述
这个图(热度图)应该在python的missingno工具箱是可以画的,不细说;matlab也有现成求pearson系数的箱子;
Pearson系数的公式:
在这里插入图片描述
μ μ μ表示的是平均值。所以我们需要求平均值这一步。

#下面展示的是加权计算推荐系数部分
def choseFood(outdata, num):#outdata就是每行为一个用户对所有菜评分的列表
    prr = calcAttribute(outdata, num)#pearson系数,calcAttribute算出来的是一个n行向量
    list=[]
    mid=[]
    out_list=[]
    food_rank=[]
    for i in range(1682):
        food_rank.append([i,0])#形成排名index
    k=0
    for i in range(943):
        list.append([i,prr[i]])
    for i in range(943):
        for j in range(942-i):
            if list[j][1]<list[j+1][1]:#根据pearson系数来调整菜排序
                mid=list[j]
                list[j]=list[j+1]
                list[j+1]=mid
    for i in range(1,51):
        for j in range(0,1682):
            food_rank[j][1]=food_rank[j][1]+outdata[list[i][0]][j]*list[i][1]/50
            #j:菜品,菜品的rank等于它原本的0加i用户对菜j的评分乘i用户的pearson系数/50
    for i in range(1682):#根据rank排序
        for j in range(1681-i):
            if food_rank[j][1]<food_rank[j+1][1]:
                mid=food_rank[j]
                food_rank[j]=food_rank[j+1]
                food_rank[j+1]=mid
    for i in range(1,1682):
	    
        if(outdata[num-1][food_rank[i][0]]==0):#编号num用户对按pearson的排行榜里第i个菜的评分为0(也就是没有点过这个菜)
            mark=0
            for d in out_list:#d是“菜品-推荐系数”
                if d[0]==j:
                        mark=1
                if mark!=1:
                    k+=1
                    out_list.append(foof_rank[i])
            if k==10:
                break
    return food_rank

菜品的数据格式:
菜品id 上架时间 0 0 0 0 0 0 1 0 1 0 .。。。(这里是19个特征,有就1,没有就0)

用户评分数据格式:
用户id 菜品id 评分(0-5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值