点云配准算法-旋转矩阵估计-Kabsch-Umeyama algorithm

Kabsch-Umeyama algorithm

参考文献:

  1. https://www.wikiwand.com/en/Kabsch_algorithm

面向点云配准,最小化两点集均方根误差(RMSD, root mean squared deviation) 来计算最佳旋转矩阵。

注:该算法只能计算旋转矩阵,做点云配准还需要计算平移向量。当平移和旋转都正确计算出,该算法有时也叫partial Procrustes superimposition (see also orthogonal Procrustes problem)

步骤:

  1. a translation
  2. the computation of a covariance matrix
  3. the computation of the optimal rotation matrix

First Step: Translation

将两组点集的质心对齐坐标系原点:
P ^ = ∣ ∣ P − P c e n t r o i d ∣ ∣ 1 \hat{P} = || P - P_{centroid} ||_1 P^=∣∣PPcentroid1

Second Step: calculate the covariance matrix

calculate the corrs-covariance matrix

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值