Kabsch-Umeyama algorithm
参考文献:
面向点云配准,最小化两点集均方根误差(RMSD, root mean squared deviation) 来计算最佳旋转矩阵。
注:该算法只能计算旋转矩阵,做点云配准还需要计算平移向量。当平移和旋转都正确计算出,该算法有时也叫partial Procrustes superimposition (see also orthogonal Procrustes problem)
步骤:
- a translation
- the computation of a covariance matrix
- the computation of the optimal rotation matrix
First Step: Translation
将两组点集的质心对齐坐标系原点:
P ^ = ∣ ∣ P − P c e n t r o i d ∣ ∣ 1 \hat{P} = || P - P_{centroid} ||_1 P^=∣∣P−Pcentroid∣∣1
Second Step: calculate the covariance matrix
calculate the corrs-covariance matrix