前言
主要写的目的是方便期末复习图论(张清华等老师)的各个章节,不适于零基础。
一、图的基本概念
1.图的定义及相关概念
1.无序对
无序对:任意两个元素构成为(a,b)的形式
无序积:两个集合的无序对组成的集合
2.无向图
用集合G表示=<V,E>,即<结点,边>的集合
3.有向图
D=<V,E>
4.标定图
图的结点和边都标记名称的标定图
5.点和边的关系
一条边关联的两个结点重合(即为同一个结点)称为环或回路
无边关联的结点称为孤立点
6.图的阶数
平凡图:只有一个结点,且无边
7.边的重数
关联于同一个结点的多条边称为平行边(有向图需要方向一致)
不含平行边的和环称为简单图
2.结点的度
1.度数
与结点相关联的边数即为度数,用deg(v)表示度数(奇度、偶度、最大度、最小度)
2.出度+、入度-
环既是出,又是入,无向图度+2,有向图出度+1,入度+1
3.悬挂
度为1的点为悬挂点 、其关联的边为悬挂边
4.度序列
按照点V(v1...)序列,构造的度序列(deg(v1)...)
5.握手定理
-------------------------------12.21
(1)边数为m,则图共2m度segema deg(vi)=2m
(2)有向图的segema deg+=segema deg-=2m
(3)奇度结点的个数必为偶数
两个例子:
握手定理的应用例子(握手定理第三条):
3.完全图、正则图、补图、子图
完全图Kn:任意两结点都有边相连,边数为n*(n-1)/2
有向完全图Dn:任意两结点都有一对方向相反的边相连边数为n*(n-1)
竞赛图:有向简单图任意两结点都有一条边相连,边数为n*(n-1)/2
正则图:在无向简单图,每个结点的度数为k,该图称为k-正则图(完全图为n-1-正则图)
补图:两个图的边集能组成完全图,则称这两个图互为补图
子图:边和顶点都属于
生成子图:顶点相同,边属于
导出子图:
结点属于,子图结点的所有边都存在在子图中(点导出子图),简称导出子图
结点属于,子图边的所有结点都存在在子图中(边导出子图)G[E']
4.图的同构
同构的必要条件:
(1)结点相同
(2)边数相同
(3)对应点的度数相同
例子:
例子:
但是结点相等,边数相等,度序列相同的两个图依旧可能不同构
5.图的运算
删除边G-E'、点G-V‘
收缩边G\e
加新边
G+(v2,v5)或者
---------------------------------------------------------12.22
二、图的连通性
1.通路
1. 通路 回路
通路中的结点和边可能重复(存在环)
简单通路:e1...en互不相同,无重复边(存在环)
路径:通路中的v1...vn互不相同,无重复点
回路:起点和终点相等
简单回路:e1...en互不相同
圈:回路中的v1...vn互不相同(长度为奇数的圈为奇圈,偶为偶圈)
2.图的连通性
1.结点的连通
一个无向图中的任意两个结点都是连通的,则称图G是连通图(平凡图就是连通图)
2.连通分支
分支数用w(G)表示
3.可达结点
4.结点间的距离
5.有向连通图
定理:
有向连通图是强连通图当且仅当D存在一条经过每个结点至少一次的回路
3.无向图的连通性
1.点割集 割点
从连通图中删去一个点割集(删除点以及其点关联的边)得到的子图是不连通的(增加连通分支)
两个条件:
{v2,v3,v4}不是,因为它的子集{v2,v4}删去后,和原始图的连通分支=1不一样
2.点连通度
从连通图中删去一个点割集后得到的子图是不连通的
连通度是为了产生一个不连通图所要删除结点的最少数目
规定平凡图的连通度是0,规定完全图Kn的连通度是n-1
非连通图的连通度为0
存在割点的连通图的连通度为1
k-连通图中任意删除k-1个结点后仍然连通
3.边割集 割边(桥)
从连通图中删去一个边割集得到的子图是不连通的
两个条件:
4.边连通度
5.连通度(有可能)
6.割点和割边的判断(不重要)
定理:
定理:
定理:
7.扩大路径法(不重要)
定理:
4.二部图(有涉及)
1.二部图的定义
n阶零图为二部图
2.二部图的判定(有可能)
三、图的矩阵表示
1.关联矩阵
1.无向关联矩阵
结点和边的关系的矩阵(mij是结点与边关联的次数)
2.无环有向图关联矩阵
入度是-1
2.邻接矩阵
有向邻接矩阵
例子
行之和为出度,列之和为入度
2.无向简单图邻接矩阵
例子
定理:
例子:
3.可达矩阵
例子
4.可达矩阵的计算
1.利用邻接矩阵A和单位矩阵E
B=E+A+A**2+...+A**(n-1)
可达矩阵P=B(Bij=0=0,Bij>0=1)
2.布尔运算
计算可达矩阵,只关心两结点是否存在通路。不用关心通过的长度以及数目
布尔积(矩阵的乘法):A*A=A交A,
布尔和:A+A=A并A
此时可达矩阵的计算为
3.Warshall算法计算可达矩阵
如果是四阶矩阵进行warshall算法,
将第一行与其他第一列为1的行进行或运算得到A1,然后将得到的结果的第二行与其他第二列不为1的行进行或运算得到A2...最后得到A4,最后与单位矩阵E进行布尔和
-------------------------------------------------------12.24
四、欧拉图与哈密尔顿图
1.欧拉图
1.欧拉图的定义
欧拉图:经过图G每一条边一次且仅一次的回路,称为欧拉回路,图叫做欧拉图
半欧拉图:经过图G每一条边一次且仅一次的路,图称为半欧拉图
2.欧拉图的判定
欧拉图的必要条件(能推):无向连通图G(欧拉图)中无奇度结点
半欧拉图的必要条件:当且仅当G中有且仅有两个奇度结点
例子:
3.半欧拉图的判定(省略)
4.有向欧拉图
2.哈密尔顿图
1.哈密尔顿图的定义
哈密尔顿图:经过图G每一个结点一次且仅一次的回路,称为哈密尔顿回路,图叫做哈密尔顿图
半哈密尔顿图:经过图G每一个结点一次且仅一次的路,图称为半哈密尔顿图
2.哈密尔顿图的判定
哈密尔顿图必要条件(不重要)
w是连通分支数
例子:
哈密尔顿图充分条件(重点)
例子:
含哈密尔顿路的充分条件(略)
半哈密尔顿图必要条件