- 博客(17)
- 资源 (1)
- 问答 (1)
- 收藏
- 关注
原创 ACwing 1014.登山
五一到了,ACM队组织大家去登山观光,队员们发现山上一共有 N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要。前一个浏览景点的编号同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦。队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?求一个数组的最大值: Arrays.stream(list).max.getASInt()第二行包含 N个整数,表示每个景点的海拔。输出一个整数,表示最多能浏览的景点数。
2024-09-15 21:23:18 229
原创 人工智能-强化学习(理解)
其目标是使智能体在与环境的交互中获得最大的长期奖励。在这个问题中,最优解是两人沉默(上帝视角),实际倾向于选择同时认罪(均衡解)交互的过程中学习最优的行为策略。在强化学习中,智能体通过观察环境的。参与者所作出的一种策略组合,任何参与者单独改变策略都不会得到好处。Q-learning算法直接记录和更新动作-价值函数、静态博弈、动态博弈:参与者同不同时,参与者知不知道。完全信息博弈、不完全信息博弈:参与者知不知道。合作博弈、非合作博弈:参与者合不合作。只有动作-价值函数、无价值函数。学习中的探索与利用的平衡。
2024-01-06 23:31:03 427 1
原创 人工智能-深度学习
为了使边缘位置的图像像素点也参与卷积滤波,Padding技术被提出,使得卷积后的图像分辨率和卷积前图像分辨率一致。将输入值的分布标准化,变为均值0,方差1的标准正态分布,在激活函数的映射下到梯度较大的区域,使得梯度变大,,使得将误差分摊为各层所有单元,从而获得各层单元所产生的误差,再通过梯度下降对参数进行更新。做法:让卷积核在卷积图像移动步长大小跳过一些像素,即为卷积滤波,默认为1。在反向传播权重时,不更新与该神经元(被舍弃的)相关的权重(暂时不更新)目的:卷积后的图像分辨率与卷积前的图像减小、即约减。
2024-01-06 22:50:46 450 2
原创 人工智能——无监督学习方法
1.数据集是给定带有无标签信息2.关注数据特征,利用相似度函数等,挖掘数据中有价值的有用信息3.应用于聚类或降维任务中。
2024-01-05 18:48:05 508 1
原创 图论-第六章
可平面图:若图G(可能交叉)可嵌入平面(能在平面画出图示的关系),则称G是可平面图(不一定是平面嵌入)平面嵌入(n个):可平面图G在平面上画出的无交叉边的图示(可以有曲线)平面图(平面嵌入的一个,n个是同构的):可平面图的任何一个平面嵌入都称为一个平面图例子图e不是可平面图,即为不可平面图。
2023-12-30 21:32:05 4380 1
原创 最短路径-Floyd(原始)
由于目前的flod算法是利用三个for循环,通过每个结点作为中间结点,去得到各个结点之间的最短路径,这种O(n**3)的算法也被叫做Flod-warshall算法。然而,在最初的flod算法是通过不断的矩阵之间的乘积,更新跳数,去得到各个结点的最短路径。
2023-12-17 22:47:11 882 1
原创 最短路径-Dijkstra
总结:Dijkstra算法就是最开始选离源点V0最近的点,然后选好点后,再从选好点的看其邻接点的距离dist[]是否减小,减小就修改dist[](到源点距离)和path[](前驱节点);更新距离:对于当前节点的所有相邻节点,计算通过当前节点到达这些节点的距离,并更新它们的距离值。如果通过当前节点到达某个节点的距离比之前记录的距离要小,则更新该节点的距离值。对于其他未访问的节点,将其到源节点的距离标记为无穷大。选择最短距离节点:从未访问的节点中选择距离最短的节点作为当前节点,并将其标记为已访问。
2023-12-15 21:52:12 369
原创 最小生成树-kruskal
3.找到第二个最小的边的权重是12,连接的是2和3,现在我们把这两条边连起来,并且合并在一个集合里面。1.把所有的边进行排序,排完序后的边的权值是:10 12 14 16 18 22 24 25 28。2.先找到的是权值10的边的两个顶点是0和5,先将0和5这两条边合在一个集合里面,并且连上一条边。6.这个时候权值是18,注意一下,因为6和3已经在一个集合里面,我们就直接跳过,不用处理。这个就是最小生成树的生成过程,可以用个res记录每次加入边时候的权值,就能得到最小的权值。对于N条顶点,有N-1条边。
2023-12-14 20:13:03 1592 3
XGB集成算法,求一个解决
2022-10-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人