中超8 hdu 7061 GCD Game (Nim博弈,欧拉筛因子个数)

44 篇文章 0 订阅
5 篇文章 0 订阅
hdu 7061 GCD Game
题意:
  • n n n 个数

    A l i c e Alice Alice B o b Bob Bob 轮流操作

    每次操作从 n n n 个数里面取出一个数和 x x x,返回 g c d ( a i , x ) ( 1 < = x < a i ) gcd(a_i,x) (1<=x<a_i) gcd(ai,x)(1<=x<ai)

    最后不能操作的人失败

分析:
  • 明显是博弈题

    每次是对 a i a_i ai 的因子进行取舍,不妨将 a i a_i ai 表示成质因子的幂次的乘积形式: a i = 2 x 1 ∗ 3 x 2 ∗ 5 x 3 ∗ . . . a_i=2^{x_1}* 3^{x_2}*5^{x_3} * ... ai=2x13x25x3...

    当所有 a i a_i ai 被取成 1 1 1 时,即 a i a_i ai 的质因子个数为 0 0 0 时,游戏失败

    故将 a i a_i ai 所有质因子的幂次之和 ( x 1 + x 2 + x 3 + . . . ) (x_1+x_2+x_3+...) (x1+x2+x3+...) 看为石子数,剩下的就是 N i m Nim Nim 博弈了,和求 a i a_i ai 的质因子的幂次之和

  • 这题是一道理解欧拉筛过程的好题:欧拉筛过程中加上一个数组存一下,就可以得出 a i a_i ai 的质因子的幂次之和

#include<bits/stdc++.h>
using namespace std;

const int N = 1e7+5;
int num[N]; //num[i]维护质因子个数

int b[N], pri[N], tot;
inline void isprime(int n=N-5)
{
    b[0]=b[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!b[i]) pri[++tot]=i, num[i]=1;
        for(int j=1;pri[j] <= n/i;j++)
        {
            b[pri[j]*i] = 1;
            num[pri[j]*i] = num[i]+1;
            if(i%pri[j]==0) break ; 
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
	isprime();
    int T;  
    cin>>T;
    while(T--)
    {
        int n;  
        cin>>n;
		int ans=0;
		for(int i=1;i<=n;i++)
        {
			int a;  
            cin>>a;  
            ans ^= num[a];
		}
		if(ans!=0) cout<<"Alice\n";
		else  cout<<"Bob\n";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yezzz.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值