The Luckiest number (欧拉函数,问题转换,引理,快速乘)

本文解析了如何通过转化888连乘问题为模运算,利用欧拉函数和最大公约数技巧求解正整数LLL倍数的最小x值。重点讲解了gcd的应用以及如何找到φ(9Ld)的约数来求解。涉及算法如快速幂和Euler函数计算。
摘要由CSDN通过智能技术生成

The Luckiest number

题意:
  • 问多少个 8 8 8 连起来会是正整数 L L L 的倍数
分析:
  • 关键一步,巧妙转换 x x x 8 8 8 连在一起组成的数可以写作 8 ( 1 0 x − 1 ) / 9 8(10^x-1)/9 8(10x1)/9

  • 题目便是让我们求最小的x,满足: L ∣ 8 ( 1 0 x − 1 ) 9 L|\frac{8(10^x-1)}{9} L98(10x1) , 设 d = g c d ( L , 8 ) d=gcd(L,8) d=gcd(L,8)

  • L ∣ 8 ( 1 0 x − 1 ) 9 ⇔ 9 L ∣ 8 ( 1 0 x − 1 ) ⇔ 9 L d ∣ 1 0 x − 1 ⇔ 1 0 x ≡ 1 ( m o d   9 L d ) L|\frac{8(10^x-1)}{9}\Leftrightarrow9L|8(10^x-1) \Leftrightarrow\frac{9L}{d}|10^x-1 \Leftrightarrow 10^x\equiv1(mod\ \frac{9L}{d}) L98(10x1)9L8(10x1)d9L10x110x1(mod d9L)

    • 思考:第二步到第三步的转换,为什么仅需 g c d gcd gcd ,因为仅有约数会产生贡献
  • 然后,问题就转换求解求解 φ ( 9 L d ) \varphi(\frac{9L}{d}) φ(d9L) 的约数

  • 引理:若正整数 a , n a,n a,n 互质,则满足 a x ≡ 1 ( m o d   n ) a^x\equiv 1(mod\ n) ax1(mod n) , 的最小正整数 x 0 x_0 x0 φ ( n ) \varphi(n) φ(n) 的约数

  • 注意:指数比较大,快速幂里还要用快速乘,不然会炸

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

ll euler(ll n)
{
    ll ans=n;
    for(ll i=2;i*i<=n;i++)
    {
        if(n%i==0)
        {
            ans=ans/i*(i-1);
            while(n%i==0) n/=i;
        }
    }
    if(n>1) ans=ans/n*(n-1);
    return ans;
}
inline int gcd(int a,int b) { return b?gcd(b,a%b):a; }
inline ll ksc(ll a,ll b,ll p)
{
    ll res=0; a%=p; b%=p;
    while(b)
    {
        if(b&1) res=(res+a)%p;
        a=(a<<1)%p; b>>=1;
    }
	return res;
}
ll ksm(ll a,ll b,ll p)
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=ksc(ans,a,p);
        a=ksc(a,a,p); b >>= 1;
    }
    return ans;
}
signed main()
{
    ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
    ll n,cnt=0;
    while(cin>>n && n)
    {
        n=9*n/gcd(n,8);
        ll m=euler(n), ans=m;
        if(gcd(n,10)!=1) ans=0; // x与n不互质那必然为0
        else if(n==9) ans=1;
        else 
        {
            for(ll i=2;i*i<=m;i++)
            {
                if(m%i==0)
                {
                    if(ksm(10,i,n)==1) { ans=i; break; }
                    if(ksm(10,m/i,n)==1) { ans=m/i; }
                }
            }
        }
        cout<<"Case "<<++cnt<<": "<<ans<<endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yezzz.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值