The Luckiest number
题意:
- 问多少个 8 8 8 连起来会是正整数 L L L 的倍数
分析:
-
关键一步,巧妙转换: x x x 个 8 8 8 连在一起组成的数可以写作 8 ( 1 0 x − 1 ) / 9 8(10^x-1)/9 8(10x−1)/9
-
题目便是让我们求最小的x,满足: L ∣ 8 ( 1 0 x − 1 ) 9 L|\frac{8(10^x-1)}{9} L∣98(10x−1) , 设 d = g c d ( L , 8 ) d=gcd(L,8) d=gcd(L,8)
-
L ∣ 8 ( 1 0 x − 1 ) 9 ⇔ 9 L ∣ 8 ( 1 0 x − 1 ) ⇔ 9 L d ∣ 1 0 x − 1 ⇔ 1 0 x ≡ 1 ( m o d 9 L d ) L|\frac{8(10^x-1)}{9}\Leftrightarrow9L|8(10^x-1) \Leftrightarrow\frac{9L}{d}|10^x-1 \Leftrightarrow 10^x\equiv1(mod\ \frac{9L}{d}) L∣98(10x−1)⇔9L∣8(10x−1)⇔d9L∣10x−1⇔10x≡1(mod d9L)
- 思考:第二步到第三步的转换,为什么仅需 g c d gcd gcd ,因为仅有约数会产生贡献
-
然后,问题就转换求解求解 φ ( 9 L d ) \varphi(\frac{9L}{d}) φ(d9L) 的约数
-
引理:若正整数 a , n a,n a,n 互质,则满足 a x ≡ 1 ( m o d n ) a^x\equiv 1(mod\ n) ax≡1(mod n) , 的最小正整数 x 0 x_0 x0 是 φ ( n ) \varphi(n) φ(n) 的约数
-
注意:指数比较大,快速幂里还要用快速乘,不然会炸
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll euler(ll n)
{
ll ans=n;
for(ll i=2;i*i<=n;i++)
{
if(n%i==0)
{
ans=ans/i*(i-1);
while(n%i==0) n/=i;
}
}
if(n>1) ans=ans/n*(n-1);
return ans;
}
inline int gcd(int a,int b) { return b?gcd(b,a%b):a; }
inline ll ksc(ll a,ll b,ll p)
{
ll res=0; a%=p; b%=p;
while(b)
{
if(b&1) res=(res+a)%p;
a=(a<<1)%p; b>>=1;
}
return res;
}
ll ksm(ll a,ll b,ll p)
{
ll ans=1;
while(b)
{
if(b&1) ans=ksc(ans,a,p);
a=ksc(a,a,p); b >>= 1;
}
return ans;
}
signed main()
{
ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
ll n,cnt=0;
while(cin>>n && n)
{
n=9*n/gcd(n,8);
ll m=euler(n), ans=m;
if(gcd(n,10)!=1) ans=0; // x与n不互质那必然为0
else if(n==9) ans=1;
else
{
for(ll i=2;i*i<=m;i++)
{
if(m%i==0)
{
if(ksm(10,i,n)==1) { ans=i; break; }
if(ksm(10,m/i,n)==1) { ans=m/i; }
}
}
}
cout<<"Case "<<++cnt<<": "<<ans<<endl;
}
return 0;
}