现代谱估计分析信号的功率谱(1)---AR 模型谱估计

         本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(5)---《现代谱估计分析信号的功率谱(1)---AR 模型谱估计》

现代谱估计分析信号的功率谱(1)---AR 模型谱估计

目录

1 背景分析

1.1 设计要求

2 理论分析推导

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤

3 MATLAB 仿真

3.1 AR 模型谱估计

3.1.1 AR 模型自相关法功率谱估计

3.1.2 AR 模型协方差法功率谱估计

3.1.3 AR 模型与经典谱估计对比


1 背景分析

        现代谱估计是一种用于分析信号的功率谱的技术。与传统的基于傅里叶变换 的经典谱估计方法相比,现代谱估计具有更高的分辨率和更准确的频率估计能力。传统谱估计方法主要基于傅里叶变换,将信号从时域转换到频域,然后计算各个频率成分的功率。但是,傅里叶变换对于非周期信号和有限长度的信号存在分辨率限制,即无法准确区分频率相近的成分。此外,傅里叶变换还受到窗函数选择和泄漏效应的影响,可能导致谱估计的偏差。

        现代谱估计方法通过利用信号的自相关函数或协方差函数等统计特性,以及先进的数学工具和算法,提高了谱估计的分辨率和准确性。其中一些常见的方法包括自回归模型(AR模型)、最大熵谱估计(MESP)、最小方差无偏估计(MVUE)等。这些方法利用了信号中的统计信息,可以更好地分辨频率相近的成分,并减小窗函数选择和泄漏效应的影响。

        现代谱估计方法的发展受益于信号处理、统计学和计算机科学等多个领域的进步。随着技术的不断发展,现代谱估计方法将在更多领域得到应用,并为信号处理和数据分析提供更准确、更有效的工具。

        本次实验主要验证在时间序列分析中,AR 模型(自回归模型)和皮萨伦科(Pisarenko)分析方法的相关问题。

皮萨伦科(Pisarenko)分析方法见通信领域笔记专栏:

        《现代谱估计分析信号的功率谱(2)---Pisarenko 谐波分解法》

1.1 设计要求

        通过 MATLAB 软件产生如下信号:

        𝑥(𝑛) = 2 cos(2𝜋𝑓1𝑛) + 2 cos(2𝜋𝑓2𝑛) 2 cos(2𝜋𝑓3𝑛) + 𝑣(𝑛)

        其中𝑓1 = 0.05、𝑓2 = 0.40、𝑓3 = 0.42,𝑣(𝑛)是实高斯白噪声(信噪比由 5dB -10dB,步进 5dB),𝑓1-𝑓3均为归一化的频率。

        1)使用 AR 模型对信号进行功率谱估计,模型参数计算分别使用自相关法,协方差法。而后与经典谱估计进行对比分析,并且验证模型阶数变化时带来的影响。

        2)使用皮萨伦科(Pisarenko)分析信号成分。


2 理论分析推导

        信号建模谱估计是现代谱估计的重要方法,其中 AR 模型功率谱估计是最 常用的一种方法,这是因为 AR 模型参数的精确估计可以用解一组线性方程的方法求得,而对于 MA ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。所以实验的现代谱估计内容以 AR 模型谱估计为主来进行实验分析和验证。

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤


3 MATLAB 仿真

3.1 AR 模型谱估计

        首先采用归一化载波频率,设置采样点数为,生成三个不同频率的余弦信号,最后使用 awgn 函数加入高斯白噪声,生成信号𝑥𝑛

N=200;%采样点数
Fs = 1000;  %采样频率
fc1 = 0.05*Fs; % 归一化载波频率转化为载波频率
fc2 = 0.40*Fs;
fc3 = 0.42*Fs;
n = 0:1/Fs:(N-1)/Fs;

xn = 2*cos(2*pi*fc1*n) + 2*cos(2*pi*fc2*n) + 2*cos(2*pi*fc3*n);
xn = awgn(xn,5);  %加入高斯白噪声信号
nfft = N;
p=30;   %AR模型阶数
q=30;   %MA模型参数

3.1.1 AR 模型自相关法功率谱估计

        直接调用 Matlab 中的 pyulear 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%自相关法求AR模型参数
[Pxx1,F1]=pyulear(xn,p,N,Fs);%直接调用matlab中的pyulear函数估计功率谱
Pxx1=10*log10(Pxx1);
figure(1);
plot(F1,Pxx1);
title('AR模型自相关法');

        分别观察在不同的阶下,自相关法求解 AR 模型功率谱参数,阶次的选取以 步进 8102030 为选择,分别得到了 AR 模型在 2 阶、10 阶、20 阶、30 阶、60 阶、80 阶、110 阶、130 阶的情况下得到的功率谱参数情况。

        从图中可以看到,在阶次不断增加的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰,但随着阶次的增高,尤其是在 80 阶以后,尽管分辨率比较高,但出现的虚假谱峰也越来越多。我们知道,一个经验法则是:AR 模型阶次应该选择在 𝑁/3 𝑁/2之间,N 表示采样点数,这样可以得到谱估计的高分辨率。本次实验使用自相关法求谱估计参数时,选取的采样点数为 256,因此模型阶次的建议选择为 85<N<128,但根据目前的具体实验结果来看,选择30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用协方差法求解不同次阶的 AR 模型,并分析。

3.1.2 AR 模型协方差法功率谱估计

        直接调用 Matlab 中的 pburg 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%协方差法求AR模型参数
[Pxx2,F2]=pburg(xn,p,N,Fs);%直接调用matlab中的pburg估计功率谱
Pxx2=10*log10(Pxx2);
figure(2);
plot(F2,Pxx2);
title('AR模型协方差法');

        从图中可以看到,在阶次低于 30 阶的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰;但随着阶次的增高,在阶次 40 60 阶的情况下,出现了较大的虚假谱峰,导致无法区分归一化频率 0.40.42;尤其是在 60 阶以后,已经区分不了归一化频率 0.40.42。根据目前的具体实验结果来看,不论是自相关法还是协方差法的 AR 模型估计功率谱,选择 30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用 30 阶的 AR 模型谱估计对比经典谱估计,并分析。

3.1.3 AR 模型与经典谱估计对比

        采用经典谱估计的直接法和间接法估计功率谱,并对比 30 阶的 AR 模型自相关法和协方差法估计功率谱,初始信噪比 SNR 设置为 5dB,信噪比 SNR 步进幅度为-5dB

        由图可以看出,四种不同的谱估计方法在SNB=-5dB皆可以有效的估计出功率谱,能够清晰的区分相近频率。那么接下来将不断减小信噪比 SNR,比较功率谱估计情况。

还可以比较:

  • 四种方法在 SNB=0dB 时功率谱估计都可以取得相对不错的效果。

  • 四种方法在 SNB=-5dB 时功率谱估计都还可以区分相近频率点,但是经典谱估计的直接法出现的虚假谱峰较高,已经影响了判别。

  • 四种方法在 SNB=-10dB 时,经典谱估计直接法已经无法识别,经典谱估计间接法功率、AR 模型谱估计自相关法和协方差法还勉强可以识别,经典谱估计间接法功率相对更优。

  • 四种方法在 SNB=-15dB 时,此时四种方法皆不可以识别相近谱峰,无法使用这四种方法进行谱估计。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者关注VX公众号:Rain21321,联系作者。

MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar (最近看了几个关于功率谱的问题,有关AR模型谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE', 'AIC', 'MDL', 'CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m     for j = 1:n         X(i,j) = xt(n i-j);     end end beta = inv(X'*X)*X'*Y'; 复制代码 beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计 文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则(Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): for m = 1:N-1    ……       % 判断是否达到所选定阶准则的要求    if strcmp(criterion,'FPE')        objectfun(m 1) = (N (m 1))/(N-(m 1))*E(m 1);    elseif strcmp(criterion,'AIC')        objectfun(m 1) = N*log(E(m 1)) 2*(m 1);    elseif strcmp(criterion,'MDL')        objectfun(m 1) = N*log(E(m 1)) (m 1)*log(N);    elseif strcmp(criterion,'CAT')        for index = 1:m 1            temp = temp (N-index)/(N*E(index));        end        objectfun(m 1) = 1/N*temp-(N-(m 1))/(N*E(m 1));    end        if objectfun(m 1) >= objectfun(m)        orderpredict = m;        break;    end end 复制代码 orderpredict变量即为使用相应准则预测的AR模型阶次。 (注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion) 登录/注册后可看大图 程序1.JPG (35.14 KB, 下载次数: 20352) 下载附件  保存到相册 2009-8-28 20:54 上传 登录/注册后可看大图 程序2.JPG (51.78 KB, 下载次数: 15377) 下载附件  保存到相册 2009-8-28 20:54 上传
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不去幼儿园

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值