P1955 [NOI2015] 程序自动分析(并查集+离散化)

任意门!

题意:
就是给你一个数组,但是这些数组有一定的约束条件然后给你这些约束条件,然后你判断在这些约束条件下数组是否成立

首先,这个题目一给,想到的就是并查集!

并查集

并查集就是来判断两个元素是不是在同一个集合里面,他其实就是一个森林,然后有一个数组f存放他的父节点,然后当 f i = i f_i=i fi=i的时候,他的父节点就是他自己,即他就是根节点

并查集有两个基本的操作:findmerge

int find(int x)
{
	if(f[x]==x) return x;
    else return find(f[x]);
}
void merge(int a,int b)//将两个树的根节点合并
{
	f[find(a)]=find(b);
}

路径压缩

但这个样子直接查找,复杂度也很高,所以这个时候要用到路径压缩

我们只需要利用一个结点的最早的祖先,那么只需要每次find操作过程中,把这个结点的爸爸改成它最早的祖先。

int find(int x)
{
	if(f[x]==x) return x;
    else return f[x]=find(f[x]);
}

离散化

“离散化”是把无穷大集合中的若干个元素映射为有限集合以便于统计的方法
首先由题目ii,jj的规模:1<=i,j<=1e9 可知需要离散化

离散化,有两种方法

离散化后重复元素相同

1、用一个数组将离散的数据存下来。
2、排序,后面要二分。
3、去重,因为要保证相同的元素离散化后数字相同。
4、索引,再用二分把离散化后的数字放回原数组。

n 原数组大小
num 原数组中的元素
lsh 离散化的数组
cnt 离散化后的数组大小

#include<algorithm> // 头文件 
 
const int MAXN = 1e6+4;

int lsh[MAXN], cnt, num[MAXN], n;
 
for (int i=1; i<=n; i++) {
    scanf("%d",&num[i]);
    lsh[i] = num[i];	
}
 
sort(lsh+1 , lsh+n+1);//排序
cnt = unique(lsh+1, lsh+n+1) - lsh - 1;//去重
 
//二分查找
for(int i=1; i<=n; i++) {
    num[i] = lower_bound(lsh+1 , lsh+cnt+1 , num[i]) - lsh;
}

其中两个函数

unique()

unique的作用是“去掉”容器中相邻元素的重复元素(不一定要求数组有序),它会把重复的元素添加到容器末尾(所以数组大小并没有改变),而返回值是去重之后的尾地址

lower_bound()

lower_bound( )和upper_bound( )都是利用二分查找的方法在一个排好序的数组中进行查找的。

在从小到大的排序数组中,lower_bound(begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。
而在
从大到小的数组中
就要用到函数重载了
lower_bound( begin,end,num,greater() ): 从数组的begin位置到end-1位置二分查找第一个小于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>

using namespace std;

const int N=1000007;
int num[N],lsh[N*3];

struct node//记录所读入的数
{
    int x,y,e;
} a[N];

bool cmp(node a,node b)
{
    return a.e>b.e;
}

int _find(int x)
{
    if(x==num[x])return x;
    return num[x]=_find(num[x]);
}

inline void init(int x)//初始化
{
    for(int i=1; i<=x; i++)
        num[i]=i;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(num,0,sizeof num);
        memset(a,0,sizeof a);
        memset(lsh,0,sizeof lsh);
        int flag=1;
        int tans=-1;
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
        {
            scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].e);
            lsh[++tans]=a[i].x;
            lsh[++tans]=a[i].y;
        }
        sort(lsh,lsh+tans);//离散化开始了
        int k=unique(lsh,lsh+tans)-lsh;//去重
        for(int i=1; i<=n; i++)
        {
            a[i].x=lower_bound(lsh,lsh+k,a[i].x)-lsh;
            a[i].y=lower_bound(lsh,lsh+k,a[i].y)-lsh;
        }
        init(k);
        sort(a+1,a+1+n,cmp);//按e来排序,先把可以相等的合并在一起,再判断不相等的是否能够满足
        for(int i=1; i<=n; i++)
        {
            int f1=_find(a[i].x);
            int f2=_find(a[i].y);
            if(a[i].e)
                num[f1]=f2;
            else if(f1==f2)
            {
                printf("NO\n");
                flag=0;
                break;
            }
        }
        if(flag)printf("YES\n");
    }
    return 0;
}

这一题过的实在太艰难了,可能还是对知识点不太熟的原因吧!

关于1LL

(一个题外的,记录一下)
1LL是为了在计算时,把int类型的变量转化为long long,然后再赋值给long long类型的变量。不至于后面计算溢出,* 1LL之后类型就转换为long long,在进行类型转换的时候,在其他类型的数字后面乘以一个1LL,就可以避免强制转换时候的精度问题

NOI(全国青少年信息学奥林匹克竞赛)是中国国内最高级别的信息学竞赛,旨在培养青少年信息学创新能力和竞赛实力。NOI的基础知识点之一是并查集,是一种用于解决集合类问题的数据结构。 修路问题可以很好地应用并查集,例如给定一些道路,每条道路连接两个城市,我们要求判断两个城市是否在同一个连通分量中(即是否可以通过已修的道路从一个城市到达另一个城市)。 在解决这个问题时,可以将每个城市看做一个节点,并用并查集来记录节点的父节点,初始时每个节点的父节点为它自身。随着修建道路,将连接的城市节点合并到同一个集合中,即将其中一个城市节点的父节点设为另一个城市节点的父节点。通过不断合并节点,最终我们可以得到若干个连通分量。 当需要判断两个城市是否在同一个连通分量中时,只需查找它们的根节点是否相同。如果根节点相同,则说明两个城市在同一个连通分量中,可以通过已修的道路相互到达;如果根节点不同,则说明两个城市不在同一个连通分量中,无法相互到达。 通过并查集,我们可以高效地解决修路问题,实现基础的连通性判断。在NOI竞赛中,修路问题常常是并查集的一道典型应用题,通过掌握并查集的原理和应用,我们可以更好地解决该类问题,提高信息学竞赛的成绩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值