数据结构与算法面试题:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。(提示:使用动态规划或者中心扩散)

数据结构与算法面试题:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。(提示:使用动态规划或者中心扩散)

简介:给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。(提示:使用动态规划或者中心扩散)

算法思路

算法思路:

回文串是一个正反读都相同的字符串,在本题中需要找到最长的回文子串。首先考虑暴力解法,枚举所有可能的子串,并判断是否为回文串。时间复杂度为 O ( n 3 ) O(n^3) O(n3),无法通过本题。

因此可以使用动态规划和中心扩散两种方法来提高效率,其中较为简单的是中心扩散。我们发现,回文串是以中心对称的,可以想到从每个字符作为中心,向两边扩展找出回文串,然后取长度最长的作为答案。在具体实现时,注意回文串长度可能是奇数或偶数,属于两种情况,需要分别考虑。时间复杂度为 O ( n 2 ) O(n^2) O(n2)

下面是C++代码实现,注释已加入:

#include <iostream>
#include <string>

using namespace std;

// 中心扩散法寻找回文子串
string longestPalindrome(string s) {
    int n = s.size();
    if (n < 2) return s; // 字符串长度小于2则直接返回s

    int start = 0, len = 0; // 记录最长回文子串的起点和长度
    for (int i = 0; i < n; ++i) { // 枚举中心点i
        // 分别处理回文子串长度为奇数、偶数的情况
        for (int k = 0; k < 2; ++k) {
            int left = i, right = i + k;
            while (left >= 0 && right < n && s[left] == s[right]) {
                --left;
                ++right;
            }
            // 当前回文子串长度为(right - 1) - (left + 1) + 1 = right - left - 1
            int cur_len = right - left - 1;
            if (cur_len > len) { // 更新最长回文子串
                start = left + 1;
                len = cur_len;
            }
        }
    }
    return s.substr(start, len); // 返回最长回文子串
}

int main() {
    string s = "babad";
    string ans = longestPalindrome(s);
    cout << ans << endl;
    return 0;
}

其中,首先判断字符串长度是否小于2,如果是则直接返回原字符串。然后从每个字符位置分别向两边扩展,寻找回文子串。需要注意的是,在枚举中心点时需要分别处理回文子串长度为奇数和偶数的情况(即中间一个字符和中间两个字符),同时在扩展回文子串时需要判断左右指针是否越界,并且注意当前回文子串长度的计算方式。最后返回最长回文子串即可。

  • Java
public class Main {

    public static String longestPalindrome(String s) {
        int n = s.length();
        if (n < 2) return s;

        int start = 0, len = 0;
        for (int i = 0; i < n; ++i) {
            for (int k = 0; k < 2; ++k) {
                int left = i, right = i + k;
                while (left >= 0 && right < n && s.charAt(left) == s.charAt(right)) {
                    --left;
                    ++right;
                }
                int curLen = right - left - 1;
                if (curLen > len) {
                    start = left + 1;
                    len = curLen;
                }
            }
        }
        return s.substring(start, start + len);
    }

    public static void main(String[] args) {
        String s = "babad";
        String ans = longestPalindrome(s);
        System.out.println(ans); // "bab"
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客李华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值