pytorch中的非线性回归

本文介绍了如何在PyTorch中构建一个简单的非线性回归模型,通过一个具有ReLU激活函数的隐藏层和线性输出层,使用MSE损失函数和随机梯度下降优化器进行训练,并展示了训练过程和预测结果的可视化。
摘要由CSDN通过智能技术生成

pytorch中的非线性回归

简介:非线性回归是指因变量(目标输出)与自变量(特征输入)之间的关系不是线性的情况。与线性回归不同,非线性回归中因变量与自变量之间的关系可能是曲线状的,可以是多项式关系、指数关系、对数关系等。在非线性回归中,模型的拟合函数通常不是线性的,因此需要使用其他方法来拟合数据。

下面是PyTorch 实现非线性回归,并解释代码中的关键部分。

  • 首先导入必要的库:
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
  • 接下来,生成一些非线性的数据用于训练模型:
# 生成非线性数据
X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 生成在[-1, 1]之间的100个数据点
Y = X.pow(2) + 0.2 * torch.rand(X.size())  # 添加噪声
  • 定义一个简单的非线性回归模型。在这个例子中,使用一个具有单个隐藏层的神经网络模型。隐藏层使用 ReLU 激活函数,输出层不使用激活函数。
class NonLinearRegression(nn.Module):
    def __init__(self):
        super(NonLinearRegression, self).__init__()
        self.hidden_layer = nn.Linear(1, 10)  # 隐藏层
        self.output_layer = nn.Linear(10, 1)   # 输出层

    def forward(self, x):
        x = torch.relu(self.hidden_layer(x))
        x = self.output_layer(x)
        return x
  • 使用实例化模型、定义损失函数和优化器:
model = NonLinearRegression()
criterion = nn.MSELoss()  # 使用均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.1)  # 使用随机梯度下降优化器
  • 进行模型训练:
num_epochs = 1000
for epoch in range(num_epochs):
    outputs = model(X)  # 前向传播
    loss = criterion(outputs, Y)  # 计算损失
    
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 反向传播
    optimizer.step()  # 更新参数
    
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

最后,我们绘制模型的预测结果和原始数据之间的对比图:

plt.scatter(X.data.numpy(), Y.data.numpy())  # 绘制原始数据散点图
plt.plot(X.data.numpy(), outputs.data.numpy(), 'r-', lw=3)  # 绘制模型预测结果曲线
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Non-linear Regression')
plt.show()
  • 完整代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# 生成非线性数据
X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 生成在[-1, 1]之间的100个数据点
Y = X.pow(2) + 0.2 * torch.rand(X.size())  # 添加噪声

# 定义非线性回归模型
class NonLinearRegression(nn.Module):
    def __init__(self):
        super(NonLinearRegression, self).__init__()
        self.hidden_layer = nn.Linear(1, 10)  # 隐藏层
        self.output_layer = nn.Linear(10, 1)   # 输出层

    def forward(self, x):
        x = torch.relu(self.hidden_layer(x))
        x = self.output_layer(x)
        return x

# 实例化模型、定义损失函数和优化器
model = NonLinearRegression()
criterion = nn.MSELoss()  # 使用均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.1)  # 使用随机梯度下降优化器

# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):
    outputs = model(X)  # 前向传播
    loss = criterion(outputs, Y)  # 计算损失
    
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 反向传播
    optimizer.step()  # 更新参数
    
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 绘制模型的预测结果和原始数据之间的对比图
plt.scatter(X.data.numpy(), Y.data.numpy())  # 绘制原始数据散点图
plt.plot(X.data.numpy(), outputs.data.numpy(), 'r-', lw=3)  # 绘制模型预测结果曲线
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Non-linear Regression')
plt.show()

  • 运行结果
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客李华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值