题目链接
1.思想转换
对于每头牛,要么选要么不选,有点类似于01背包,但是又有两个参数:智力值和幽默值,那应该如何设置dp使之能够枚举所有的情况呢?
在考虑过程中,我们发现,每个智力值对应的所有状态都能够枚举出来,并且在相应的智力值中能够有一个对应的幽默值,因此:
我们设dp[i]为智力值为i时对应的幽默值最大,最终选择完后能够得到最大的幽默值,二者加和处理即为结果。
2.细节点
当a[i]为负数时正序循环(dp要用之前的状态转换而来)
3.代码部分
#include<iostream>
#include<algorithm>
#include<math.h>
#include<stdio.h>
#include<cstring>
#include <queue>
#include<iomanip>
using namespace std;
#define maxn 200000
#define N 110
#define inf 1<<30
#define pos 100000
int n, a[N], b[N];
int dp[maxn];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
cin >> b[i];
}
for (int i = 0; i <= maxn; i++)
dp[i] = -inf;
dp[pos] = 0;
for (int i = 1; i <= n; i++)
{
if (a[i] < 0 && b[i] < 0) continue;
if (a[i] > 0)
for (int j = maxn; j >= a[i]; j--)
dp[j] = max(dp[j], dp[j - a[i]] + b[i]);
else for (int j = a[i]; j <= maxn + a[i]; j++)
dp[j] = max(dp[j], dp[j - a[i]] + b[i]);
}
int ans = -inf;
for (int i = pos; i <= maxn; i++)
if (dp[i] >= 0)
ans = max(ans, i - 100000 + dp[i]);
cout << ans << endl;
}