概率论 前置知识点

极限和连续性

极限

极限是微积分中的一个基本概念,描述的是当一个变量接近某个值时,函数的行为。它帮助我们理解函数在接近某点时的趋势,即使那个点本身不在函数的定义域内。极限的数学表达是 lim ⁡ x → a f ( x ) \lim_{x \to a} f(x) limxaf(x),意思是当 x x x 接近 a a a f ( x ) f(x) f(x)的趋势。

连续性

连续性是函数在某点的一种性质。如果一个函数在某点连续,意味着:

  • 该点的极限存在。
  • 函数在该点有定义。
  • 函数值与极限值相同。

换句话说,如果函数在某点连续,你可以在该点附近无缝地绘制函数图形,没有间断或跳跃。

极限和连续性

极限和连续性是微积分和数学分析中的核心概念。以下是这些概念的基本定义和性质。

极限 (Limit)

定义
  • 函数极限:若当 x x x 趬趋于某一值 a a a 时,函数 f ( x ) f(x) f(x) 趬趋于 L L L,则称 L L L 为当 x x x 趬趋于 a a a f ( x ) f(x) f(x) 的极限,记作 lim ⁡ x → a f ( x ) = L \lim_{x \to a} f(x) = L limxaf(x)=L
  • 数列极限:若数列 a n {a_n} an 的项越来越接近某一固定值 L L L,则称 L L L 为该数列的极限,记作 lim ⁡ n → ∞ a n = L \lim_{n \to \infty} a_n = L limnan=L
性质
  • 极限的唯一性:如果极限存在,它必须是唯一的。
  • 极限的局部性:极限的存在只与函数在极限点附近的行为有关。
  • 极限的线性性: lim ⁡ x → a [ c ⋅ f ( x ) + d ⋅ g ( x ) ] = c ⋅ lim ⁡ x → a f ( x ) + d ⋅ lim ⁡ x → a g ( x ) \lim_{x \to a} [c \cdot f(x) + d \cdot g(x)] = c \cdot \lim_{x \to a} f(x) + d \cdot \lim_{x \to a} g(x) limxa[cf(x)+dg(x)]=climxaf(x)+dlimxag(x),其中 c c c d d d 是常数。

连续性 (Continuity)

定义
  • 函数连续性:如果 lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) limxaf(x)=f(a),则称函数 f ( x ) f(x) f(x) 在点 a a a 处连续。
  • 间断点:若函数在某点不连续,则该点称为函数的间断点。
类型
  • 可去间断点:存在极限但极限值与函数值不等。
  • 跳跃间断点:左极限和右极限存在但不相等。
  • 无穷间断点:极限为无穷大。
性质
  • 连续函数的和、差、积、商(分母不为零)仍然连续。
  • 闭区间上连续函数具有界限性和最大最小值定理。

左连续和右连续

左连续和右连续是分析函数在特定点上连续性的概念。

左连续 (Left-Continuity)
定义
  • 如果对于给定的点 a a a,当 x x x 从左侧趋近于 a a a 时,函数 f ( x ) f(x) f(x) 的极限等于 f ( a ) f(a) f(a),即 lim ⁡ x → a − f ( x ) = f ( a ) \lim_{x \to a^-} f(x) = f(a) limxaf(x)=f(a),则称函数 f ( x ) f(x) f(x) 在点 a a a 处左连续。
举例
  • 考虑阶梯函数 f ( x ) f(x) f(x),在每个整数点上,它从左侧趋近时,极限等于该点的函数值,因此在每个整数点上左连续。
右连续 (Right-Continuity)
定义
  • 如果对于给定的点 a a a,当 x x x 从右侧趋近于 a a a 时,函数 f ( x ) f(x) f(x) 的极限等于 f ( a ) f(a) f(a),即 lim ⁡ x → a + f ( x ) = f ( a ) \lim_{x \to a^+} f(x) = f(a) limxa+f(x)=f(a),则称函数 f ( x ) f(x) f(x) 在点 a a a 处右连续。
举例
  • 同样考虑阶梯函数 f ( x ) f(x) f(x),在每个整数点上,它从右侧趋近时,极限等于该点的函数值,因此在每个整数点上右连续。

注意点

  • 一个函数在某点同时左连续和右连续,才能称之为在该点连续。
  • 左连续或右连续的函数可以在某点具有间断点,但这些间断点不是跳跃或无穷间断点。

基本积分法则

高斯积分: ∫ − ∈ f t y + ∞ e − x 2 d x = π \int_{-\in fty}^{+\infty}e^{-x^2}dx=\sqrt{\pi} fty+ex2dx=π

  1. 幂函数的积分
    ∫ x n   d x = x n + 1 n + 1 + C \int x^n \, dx = \frac{x^{n+1}}{n+1} + C xndx=n+1xn+1+C
    其中 n ≠ − 1 n \neq -1 n=1 C C C 为积分常数。

  2. 指数函数的积分
    ∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C

  3. 自然对数函数的积分
    ∫ ln ⁡ x   d x = x ln ⁡ x − x + C \int \ln x \, dx = x \ln x - x + C lnxdx=xlnxx+C

  4. 三角函数的积分
    ∫ sin ⁡ x   d x = − cos ⁡ x + C \int \sin x \, dx = -\cos x + C sinxdx=cosx+C
    ∫ cos ⁡ x   d x = sin ⁡ x + C \int \cos x \, dx = \sin x + C cosxdx=sinx+C

  5. 反三角函数的积分
    ∫ 1 1 − x 2   d x = sin ⁡ − 1 x + C \int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C 1x2 1dx=sin1x+C
    ∫ 1 1 + x 2   d x = tan ⁡ − 1 x + C \int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C 1+x21dx=tan1x+C

  6. 积分的线性性质
    ∫ [ a f ( x ) + b g ( x ) ]   d x = a ∫ f ( x )   d x + b ∫ g ( x )   d x \int [af(x) + bg(x)] \, dx = a \int f(x) \, dx + b \int g(x) \, dx [af(x)+bg(x)]dx=af(x)dx+bg(x)dx
    其中 a a a b b b 是常数。

  7. 换元积分法(替换法):
    如果 u = g ( x ) u = g(x) u=g(x),那么
    ∫ f ( g ( x ) ) g ′ ( x )   d x = ∫ f ( u )   d u \int f(g(x))g'(x) \, dx = \int f(u) \, du f(g(x))g(x)dx=f(u)du

  8. 分部积分法
    ∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du udv=uvvdu
    其中 u u u v v v 是函数, d v dv dv d u du du 是它们的微分。

基本导数法则:

  1. 幂法则
    d d x ( x n ) = n x n − 1 \frac{d}{dx}(x^n) = nx^{n-1} dxd(xn)=nxn1
    其中 n n n 是任意实数。

  2. 常数法则
    d d x ( c ) = 0 \frac{d}{dx}(c) = 0 dxd(c)=0
    其中 c c c 是常数。

  3. 常数乘法法则
    d d x ( c f ( x ) ) = c d d x f ( x ) \frac{d}{dx}(cf(x)) = c \frac{d}{dx}f(x) dxd(cf(x))=cdxdf(x)
    其中 c c c 是常数。

  4. 和法则
    d d x ( f ( x ) + g ( x ) ) = d d x f ( x ) + d d x g ( x ) \frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) dxd(f(x)+g(x))=dxdf(x)+dxdg(x)

  5. 差法则
    d d x ( f ( x ) − g ( x ) ) = d d x f ( x ) − d d x g ( x ) \frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x) dxd(f(x)g(x))=dxdf(x)dxdg(x)

  6. 乘积法则(莱布尼兹法则):
    d d x ( f ( x ) g ( x ) ) = f ( x ) d d x g ( x ) + g ( x ) d d x f ( x ) \frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x) dxd(f(x)g(x))=f(x)dxdg(x)+g(x)dxdf(x)

  7. 商法则
    d d x ( f ( x ) g ( x ) ) = g ( x ) d d x f ( x ) − f ( x ) d d x g ( x ) [ g ( x ) ] 2 \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{[g(x)]^2} dxd(g(x)f(x))=[g(x)]2g(x)dxdf(x)f(x)dxdg(x)
    其中 g ( x ) ≠ 0 g(x) \neq 0 g(x)=0

  8. 链式法则
    d d x f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x) dxdf(g(x))=f(g(x))g(x)

常见的求导公式

  1. 幂函数
    d d x x n = n x n − 1 \frac{d}{dx} x^n = nx^{n-1} dxdxn=nxn1

  2. 指数函数
    d d x e x = e x \frac{d}{dx} e^x = e^x dxdex=ex
    d d x a x = a x ln ⁡ a ( a > 0 , a ≠ 1 ) \frac{d}{dx} a^x = a^x \ln a \quad (a > 0, a \neq 1) dxdax=axlna(a>0,a=1)

  3. 对数函数
    d d x ln ⁡ x = 1 x ( x > 0 ) \frac{d}{dx} \ln x = \frac{1}{x} \quad (x > 0) dxdlnx=x1(x>0)
    d d x log ⁡ a x = 1 x ln ⁡ a ( x > 0 , a > 0 , a ≠ 1 ) \frac{d}{dx} \log_a x = \frac{1}{x \ln a} \quad (x > 0, a > 0, a \neq 1) dxdlogax=xlna1(x>0,a>0,a=1)

  4. 三角函数
    d d x sin ⁡ x = cos ⁡ x \frac{d}{dx} \sin x = \cos x dxdsinx=cosx
    d d x cos ⁡ x = − sin ⁡ x \frac{d}{dx} \cos x = -\sin x dxdcosx=sinx
    d d x tan ⁡ x = sec ⁡ 2 x \frac{d}{dx} \tan x = \sec^2 x dxdtanx=sec2x

  5. 反三角函数
    d d x arcsin ⁡ x = 1 1 − x 2 ( ∣ x ∣ < 1 ) \frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^2}} \quad (|x| < 1) dxdarcsinx=1x2 1(x<1)
    d d x arccos ⁡ x = − 1 1 − x 2 ( ∣ x ∣ < 1 ) \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^2}} \quad (|x| < 1) dxdarccosx=1x2 1(x<1)
    d d x arctan ⁡ x = 1 1 + x 2 \frac{d}{dx} \arctan x = \frac{1}{1 + x^2} dxdarctanx=1+x21

  6. 双曲函数
    d d x sinh ⁡ x = cosh ⁡ x \frac{d}{dx} \sinh x = \cosh x dxdsinhx=coshx
    d d x cosh ⁡ x = sinh ⁡ x \frac{d}{dx} \cosh x = \sinh x dxdcoshx=sinhx
    d d x tanh ⁡ x = sech 2 x \frac{d}{dx} \tanh x = \text{sech}^2 x dxdtanhx=sech2x

  7. 反双曲函数
    d d x arsinh x = 1 x 2 + 1 \frac{d}{dx} \text{arsinh} x = \frac{1}{\sqrt{x^2 + 1}} dxdarsinhx=x2+1 1
    d d x arcosh x = 1 x 2 − 1 ( x > 1 ) \frac{d}{dx} \text{arcosh} x = \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1) dxdarcoshx=x21 1(x>1)
    d d x artanh x = 1 1 − x 2 ( ∣ x ∣ < 1 ) \frac{d}{dx} \text{artanh} x = \frac{1}{1 - x^2} \quad (|x| < 1) dxdartanhx=1x21(x<1)

洛必达法则

洛必达法则(L’Hôpital’s Rule)是解决形式为“ 0 / 0 0/0 0/0”或“ ∞ / ∞ \infty/\infty ∞/∞”不定形极限问题的一种方法。该法则陈述如下:

lim ⁡ x → a f ( x ) \lim_{x \to a} f(x) limxaf(x) lim ⁡ x → a g ( x ) \lim_{x \to a} g(x) limxag(x) 均趋于 0 或 ∞ \infty ,如果 f ′ ( x ) f'(x) f(x) g ′ ( x ) g'(x) g(x) 的极限存在且 g ′ ( x ) g'(x) g(x) 不为零,那么:

lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)

使用洛必达法则的条件

  1. 初始极限形式必须是“ 0 / 0 0/0 0/0”或“ ∞ / ∞ \infty/\infty ∞/∞”。
  2. f ′ ( x ) f'(x) f(x) g ′ ( x ) g'(x) g(x) 必须存在。
  3. g ′ ( x ) g'(x) g(x) 不能在考虑的极限点上等于零。
  4. 导数的极限必须存在或者趋于 ∞ \infty

注意事项

  • 洛必达法则可能需要重复应用,直到得到一个可以求解的极限。
  • 该法则不适用于其他不定形,如“ 0 × ∞ 0 \times \infty 0×”,“ ∞ − ∞ \infty - \infty ”,“ 0 0 0^0 00”,“ ∞ 0 \infty^0 0”,“ 1 ∞ 1^\infty 1”等。
  • 在使用洛必达法则之前,应首先考虑简化表达式或使用其他极限求解方法。

泰勒级数

泰勒级数是一种将函数表示为无穷级数的方法。对于在点 a a a 处具有无限次可导性的函数 f ( x ) f(x) f(x),其泰勒级数展开为:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2+3!f′′′(a)(xa)3+

或者更一般地表示为:

f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n f(x)=n=0n!f(n)(a)(xa)n

其中, f ( n ) ( a ) f^{(n)}(a) f(n)(a) 表示函数 f f f 在点 a a a 处的第 n n n 阶导数, n ! n! n! n n n 的阶乘。

常见函数的泰勒级数

  1. 指数函数 e x e^x ex x = 0 x = 0 x=0 处的展开
    e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!} ex=1+x+2!x2+3!x3+=n=0n!xn

  2. 正弦函数 sin ⁡ x \sin x sinx x = 0 x = 0 x=0 处的展开
    sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} sinx=x3!x3+5!x57!x7+=n=0(1)n(2n+1)!x2n+1

  3. 余弦函数 cos ⁡ x \cos x cosx x = 0 x = 0 x=0 处的展开
    cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} cosx=12!x2+4!x46!x6+=n=0(1)n(2n)!x2n

  4. 自然对数函数 ln ⁡ ( 1 + x ) \ln(1+x) ln(1+x) x = 0 x = 0 x=0 处的展开
    ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} ln(1+x)=x2x2+3x34x4+=n=1(1)n1nxn

泰勒级数为我们提供了一种强大的工具,可以用来逼近复杂函数,特别是在解析方法不可行时。

偏导数

偏导数是多变量函数对其中一个变量的局部变化率的度量,而保持其他变量恒定。对于函数 f ( x , y , z , … ) f(x, y, z, \ldots) f(x,y,z,),其偏导数定义如下:

  1. x x x 的偏导数
    ∂ f ∂ x = lim ⁡ Δ x → 0 f ( x + Δ x , y , z , … ) − f ( x , y , z , … ) Δ x \frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z, \ldots) - f(x, y, z, \ldots)}{\Delta x} xf=Δx0limΔxf(x+Δx,y,z,)f(x,y,z,)

  2. y y y 的偏导数
    ∂ f ∂ y = lim ⁡ Δ y → 0 f ( x , y + Δ y , z , … ) − f ( x , y , z , … ) Δ y \frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y, z, \ldots) - f(x, y, z, \ldots)}{\Delta y} yf=Δy0limΔyf(x,y+Δy,z,)f(x,y,z,)

  3. z z z 的偏导数
    ∂ f ∂ z = lim ⁡ Δ z → 0 f ( x , y , z + Δ z , … ) − f ( x , y , z , … ) Δ z \frac{\partial f}{\partial z} = \lim_{\Delta z \to 0} \frac{f(x, y, z + \Delta z, \ldots) - f(x, y, z, \ldots)}{\Delta z} zf=Δz0limΔzf(x,y,z+Δz,)f(x,y,z,)

符号表示

  • 第一偏导数通常表示为 ∂ f ∂ x \frac{\partial f}{\partial x} xf, ∂ f ∂ y \frac{\partial f}{\partial y} yf, ∂ f ∂ z \frac{\partial f}{\partial z} zf 等。
  • 高阶偏导数表示为 ∂ 2 f ∂ x 2 \frac{\partial^2 f}{\partial x^2} x22f, ∂ 2 f ∂ x ∂ y \frac{\partial^2 f}{\partial x \partial y} xy2f 等。

几何解释

  • 偏导数 ∂ f ∂ x \frac{\partial f}{\partial x} xf 描述了在 y y y, z z z, 等其他变量保持不变时,函数 f f f 沿 x x x 方向的变化率。
  • 在二维空间中, ∂ f ∂ x \frac{\partial f}{\partial x} xf 可以理解为曲线 y = f ( x ) y = f(x) y=f(x) 在点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 处的切线斜率。

偏导数在多变量函数分析、工程学、物理学等领域中非常重要,用于描述函数在某一特定方向上的变化趋势和速率。

重积分

双重积分(Double Integral)

双重积分是数学中对二元函数在二维区域上积分的一种形式。它广泛应用于计算平面区域内的面积、物理量的总和(如质量、电荷)等。

定义

对于定义在某区域 D ⊂ R 2 D \subset \mathbb{R}^2 DR2 上的函数 f ( x , y ) f(x, y) f(x,y),其双重积分定义为:

∬ D f ( x , y )   d x   d y \iint_D f(x, y) \, dx \, dy Df(x,y)dxdy

这表示在区域 D D D 上对函数 f ( x , y ) f(x, y) f(x,y) 的值进行累加。

计算方法
  1. 区域类型判定

    • 矩形区域:如果 D D D 是矩形,即 a ≤ x ≤ b , c ≤ y ≤ d a \leq x \leq b, c \leq y \leq d axb,cyd,则双重积分可写为迭代积分:
      ∫ a b ∫ c d f ( x , y )   d y   d x \int_a^b \int_c^d f(x, y) \, dy \, dx abcdf(x,y)dydx
    • 一般区域:如果 D D D 是一般形状,首先要描述其边界,然后选择适当的积分顺序。
  2. 积分顺序

    • y y y 后对 x x x 积分
      ∫ x 1 x 2 ( ∫ y 1 ( x ) y 2 ( x ) f ( x , y )   d y ) d x \int_{x_1}^{x_2} \left( \int_{y_1(x)}^{y_2(x)} f(x, y) \, dy \right) dx x1x2(y1(x)y2(x)f(x,y)dy)dx
    • x x x 后对 y y y 积分
      ∫ y 1 y 2 ( ∫ x 1 ( y ) x 2 ( y ) f ( x , y )   d x ) d y \int_{y_1}^{y_2} \left( \int_{x_1(y)}^{x_2(y)} f(x, y) \, dx \right) dy y1y2(x1(y)x2(y)f(x,y)dx)dy
  3. 计算积分
    根据选择的积分顺序,先计算内层积分,再计算外层积分。

反三角函数

名称 常用符号 定义 定义域 值域 反正弦 y = arcsin ⁡ x x = sin ⁡ y [ − 1 , 1 ] [ − π 2 , π 2 ] 反余弦 y = arccos ⁡ x x = cos ⁡ y [ − 1 , 1 ] [ 0 , π ] 反正切 y = arctan ⁡ x x = tan ⁡ y R ( − π 2 , π 2 ) 反余切 y = arccot ⁡ x x = cot ⁡ y R ( 0 , π ) 反正割 y = arcsec ⁡ x x = sec ⁡ y ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) [ 0 , π 2 ) ∪ ( π 2 , π ] 反余割 y = arcsec ⁡ x x = csc ⁡ y ( − ∞ , − 1 ] ∪ [ 1 , + ∞ ) [ − π 2 , 0 ) ∪ ( 0 , π 2 ] \begin{array}{|c|c|c|c|c|}\hline\textbf{名称}&\text{常用符号}&\textbf{定义}&\textbf{定义域}&\text{值域}\\\hline\text{反正弦}&y=\arcsin x&x=\sin y&[-1,1]&[-\frac\pi2,\frac\pi2]\\\hline\text{反余弦}&y=\arccos x&x=\cos y&[-1,1]&[0,\pi]\\\hline\text{反正切}&y=\arctan x&x=\tan y&\mathbb{R}&(-\frac\pi2,\frac\pi2)\\\hline\text{反余切}&y=\operatorname{arccot}x&x=\cot y&\mathbb{R}&(0,\pi)\\\hline\text{反正割}&y=\operatorname{arcsec}x&x=\operatorname{sec}y&(-\infty,-1]\cup[1,+\infty)&[0,\frac\pi2)\cup(\frac\pi2,\pi]\\\hline\\\text{反余割}&y=\operatorname{arcsec}x&x=\operatorname{csc}y&(-\infty,-1]\cup[1,+\infty)&[-\frac\pi2,0)\cup(0,\frac\pi2]\\\hline\end{array} 名称反正弦反余弦反正切反余切反正割反余割常用符号y=arcsinxy=arccosxy=arctanxy=arccotxy=arcsecxy=arcsecx定义x=sinyx=cosyx=tanyx=cotyx=secyx=cscy定义域[1,1][1,1]RR(,1][1,+)(,1][1,+)值域[2π,2π][0,π](2π,2π)(0,π)[0,2π)(2π,π][2π,0)(0,2π]
在这里插入图片描述

在这里插入图片描述

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值