第七章 参数估计与假设检验

点估计

点估计(Point Estimation) 是统计推断中的一个基本概念,它涉及使用样本数据来估计一个未知的总体参数(如均值、方差等)。点估计的目标是提供单个数值作为未知参数的最佳估计。以下是点估计的关键特点和方法:

  1. 定义

    • 点估计是通过从总体中抽取的样本来估计总体参数的一种方法。它产生一个值(即“点”),作为未知参数的估计。
  2. 估计量

    • 估计量(Estimator)是用于进行点估计的规则或公式,通常表示为一个统计量,如样本均值、样本方差等。
    • 例如,用样本均值 X ‾ \overline{X} X 来估计总体均值 μ \mu μ,或用样本方差 S 2 S^2 S2 来估计总体方差 σ 2 \sigma^2 σ2
  3. 估计值

    • 估计值(Estimate)是应用估计量于具体样本数据后得到的结果,即估计量的实际计算值。
  4. 性质

    • 点估计的好坏通常由其无偏性、有效性和一致性来判断。一个好的点估计量应当是无偏的、有效的(即具有最小的方差)并且是一致的。
  5. 方法

    • 常用的点估计方法包括最大似然估计(MLE)、矩估计等。
  6. 总体均值 ( μ \mu μ): 总体均值是指一个数据集合中所有数据点的平均值。总体是指研究对象的整体,比如所有人的身高。总体均值的公式为:
    μ = ∑ i = 1 N X i N \mu = \frac{\sum_{i=1}^{N} X_i}{N} μ=Ni=1NXi
    其中, X i X_i Xi 表示每个数据点, N N N 是总体中的元素数量。

  7. 总体方差 ( σ 2 \sigma^2 σ2): 总体方差衡量的是总体数据点与总体均值之间的偏差程度。方差越大,数据点分布越分散。公式为:
    σ 2 = ∑ i = 1 N ( X i − μ ) 2 N \sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N} σ2=Ni=1N(Xiμ)2
    其中, μ \mu μ 是总体均值。

  8. 样本均值 ( x ˉ \bar{x} xˉ): 样本均值是从总体中抽取的样本数据点的平均值。样本是指从总体中随机抽取的一部分数据。公式为:
    x ˉ = ∑ i = 1 n x i n \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} xˉ=ni=1nxi
    其中, x i x_i xi 表示样本中的每个数据点, n n n 是样本中的元素数量。

  9. 样本方差 ( s 2 s^2 s2): 样本方差是衡量样本数据点与样本均值之间偏差的度量。与总体方差类似,但在计算时,分母使用的是 n − 1 n-1 n1 而不是 n n n,这是为了得到一个无偏估计。公式为:
    s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} s2=n1i=1n(xixˉ)2
    其中, x ˉ \bar{x} xˉ 是样本均值。

最大似然估计

最大似然估计(Maximum Likelihood Estimation, MLE) 是一种在统计学中用于基于观测数据估计模型参数的方法。它基于最大化似然函数,即找到使观测数据概率最大的参数值。以下是最大似然估计的基本概念:

  1. 离散型随机变量的最大似然估计

    • 如果随机变量是离散型的,似然函数 L ( θ ) L(\theta) L(θ) 定义为所有样本值的联合概率,即:

      L ( θ ) = ∏ i = 1 n P ( X = x i ; θ ) , L(\theta) = \prod_{i=1}^n P(X = x_i; \theta), L(θ)=i=1nP(X=xi;θ),

      其中 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn 是样本值, θ \theta θ 是需要估计的参数。

  2. 连续型随机变量的最大似然估计

    • 对于连续型随机变量,似然函数 L ( θ ) L(\theta) L(θ) 定义为所有样本值的联合概率密度函数,即:

      L ( θ ) = ∏ i = 1 n f ( x i ; θ ) , L(\theta) = \prod_{i=1}^n f(x_i; \theta), L(θ)=i=1nf(xi;θ),

      这里 f ( x i ; θ ) f(x_i; \theta) f(xi;θ) 是在参数 θ \theta θ 下,观测值 x i x_i xi 的概率密度函数。

矩估计

矩估计

  • 矩估计是一种不同于最大似然估计的参数估计方法,它基于样本矩(如样本均值、样本方差等)来估计总体参数。
  • 例如,可以用样本均值 x ‾ \overline{x} x 来估计总体期望 E ( X ) E(X) E(X)
    x ‾ = E ( X ) \overline{x} = E(X) x=E(X)

在实际应用中,通常需要对似然函数取对数(即对数似然函数),从而将乘积转换为求和,这样在数学上更易于处理。最大似然估计的关键是找到参数 θ \theta θ 的值,使得似然函数(或对数似然函数)最大化。

评价估计量

在统计学中,评价估计量(估计器)的标准主要包括无偏性、有效性和一致性(相合性)。这些标准帮助我们判断一个估计量的好坏,即它在估计未知参数时的性能。以下是这些标准的具体定义:

  1. 无偏性

    • 一个估计量 θ ^ \widehat{\theta} θ 是无偏的,如果它的期望等于被估计的参数值,即 E ( θ ^ ) = θ \mathbb{E}(\widehat{\theta}) = \theta E(θ )=θ
    • 注意:您的公式中的 E ( θ ^ ) = 0 \mathbb{E}(\widehat{\theta}) = 0 E(θ )=0 应该是 E ( θ ^ ) = θ \mathbb{E}(\widehat{\theta}) = \theta E(θ )=θ
  2. 有效性

    • 如果 Θ ^ 1 \widehat{\Theta}_1 Θ 1 Θ ^ 2 \widehat{\Theta}_2 Θ 2 都是未知参数 Θ \Theta Θ 的无偏估计量,且 Θ ^ 1 \widehat{\Theta}_1 Θ 1 的方差小于或等于 Θ ^ 2 \widehat{\Theta}_2 Θ 2 的方差,则 Θ ^ 1 \widehat{\Theta}_1 Θ 1 被认为比 Θ ^ 2 \widehat{\Theta}_2 Θ 2 更有效。
    • 即,如果 D ( Θ ^ 1 ) ≤ D ( Θ ^ 2 ) \mathcal{D}(\widehat{\Theta}_1) \leq \mathcal{D}(\widehat{\Theta}_2) D(Θ 1)D(Θ 2),则 Θ ^ 1 \widehat{\Theta}_1 Θ 1 更有效。
  3. 一致性(相合性)

    • 一个估计量 Θ ^ \widehat{\Theta} Θ 被称为一致的(或相合的),如果它在样本大小 n n n 趋向于无穷大时,以概率 1 收敛到被估计的参数值 Θ \Theta Θ
    • 形式化地,如果对于任意 ϵ > 0 \epsilon > 0 ϵ>0,都有 lim ⁡ n → ∞ P { ∣ Θ ^ − Θ ∣ < ϵ } = 1 \lim_{n \to \infty} \mathcal{P}\{|\widehat{\Theta} - \Theta| < \epsilon\} = 1 limnP{Θ Θ∣<ϵ}=1,则 Θ ^ \widehat{\Theta} Θ 是一致的。

这些标准为选择合适的估计量提供了指导,以确保估计结果的准确性和可靠性。

假设检验

假设检验 是统计学中用于决定样本数据是否支持某个特定假设的一种方法。以下是假设检验的基本概念和步骤:

  1. 拒绝域

    • 拒绝域 W W W 是在样本空间中的一个区域,当样本值 ( x 1 , x 2 , ⋯   , x n ) (x_1, x_2, \cdots, x_n) (x1,x2,,xn) 落在此区域内时,我们拒绝原假设 H 0 \mathcal{H}_0 H0
    • 如果样本值 ( x 1 , x 2 , ⋯   , x n ) (x_1, x_2, \cdots, x_n) (x1,x2,,xn) 不在拒绝域 W W W 内,我们则接受原假设 H 0 \mathcal{H}_0 H0
    • 拒绝域的边界点称为临界点。
  2. 两类错误

    • 第一类错误:错误地拒绝了实际为真的原假设 H 0 \mathcal{H}_0 H0,称为弃真错误。
    • 第二类错误:错误地接受了实际为假的原假设 H 0 \mathcal{H}_0 H0,称为纳伪错误。
  3. 显著性检验的一般步骤

    1. 提出假设:根据问题的要求提出原假设 H 0 \mathcal{H}_0 H0 和对立假设 H 1 \mathcal{H}_1 H1
    2. 确定显著性水平和样本容量:给定显著性水平 α \alpha α 0 < α < 1 0 < \alpha < 1 0<α<1)和样本容量 n n n
    3. 确定检验统计量及其拒绝域:选择合适的检验统计量并确定其拒绝域的形式。
    4. 计算拒绝域:按照犯第一类错误的概率等于 α \alpha α 来求出拒绝域 W W W
    5. 作出决策:根据样本值计算检验统计量 T \mathcal{T} T 的观测值 t t t,如果 t ∈ W t \in W tW,则拒绝原假设 H 0 \mathcal{H}_0 H0;否则接受原假设 H 0 \mathcal{H}_0 H0

假设检验是统计分析中的核心工具,广泛用于科学研究、工程、经济学和其他领域,以检验理论假设或实验结果是否具有统计显著性。

例题

设总体 X X X的二阶矩存在,且 σ 2 = D X \sigma^2=DX σ2=DX , 若 ( X 1 , X 2 , . . . , X n ) (X_1,X_2,...,X_n) (X1,X2,...,Xn)是从该总体中取出的一个样本, X ‾ \overline{X} X 是其样本均值,则 D X ‾ = D\overline{X}= DX=

【解析】

  1. 样本均值 X ‾ \overline{X} X:样本均值是样本中所有观察值的平均值,计算公式为 X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i X=n1i=1nXi,其中 X i X_i Xi 是样本中的第 i i i 个观测值, n n n 是样本大小。

  2. 方差的线性性质:对于任意两个独立的随机变量 X X X Y Y Y 及常数 a a a b b b,方差具有以下性质: D ( a X + b Y ) = a 2 D X + b 2 D Y D(aX + bY) = a^2DX + b^2DY D(aX+bY)=a2DX+b2DY

  3. 题目中给定条件

    • 总体 X X X 的方差( D X DX DX)为 σ 2 \sigma^2 σ2
    • ( X 1 , X 2 , . . . , X n ) (X_1, X_2, ..., X_n) (X1,X2,...,Xn) 是从总体中抽取的样本。

根据这些信息,我们可以计算样本均值 X ‾ \overline{X} X 的方差:

  • 样本均值 X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i X=n1i=1nXi

应用方差的线性性质,我们有:

D X ‾ = D ( 1 n ∑ i = 1 n X i ) D\overline{X} = D\left( \frac{1}{n} \sum_{i=1}^{n} X_i \right) DX=D(n1i=1nXi)

由于每个 X i X_i Xi 都是独立同分布的,所以方差可以分别计算并求和:

D X ‾ = 1 n 2 ∑ i = 1 n D X i D\overline{X} = \frac{1}{n^2} \sum_{i=1}^{n} DX_i DX=n21i=1nDXi

由于每个 D X i DX_i DXi 都等于 σ 2 \sigma^2 σ2,所以有:

D X ‾ = 1 n 2 ⋅ n ⋅ σ 2 D\overline{X} = \frac{1}{n^2} \cdot n \cdot \sigma^2 DX=n21nσ2

简化得:

D X ‾ = σ 2 n D\overline{X} = \frac{\sigma^2}{n} DX=nσ2

因此,样本均值 X ‾ \overline{X} X 的方差 D X ‾ D\overline{X} DX 等于总体方差 σ 2 \sigma^2 σ2 除以样本大小 n n n

  • 25
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值