【神经网络与深度学习】深度神经网络(DNN)

深度神经网络通过多层非线性变换学习复杂特征,广泛应用于图像识别等领域。然而,训练过程中存在挑战,如梯度问题和过拟合,通过创新结构如CNN、RNN和ResNet有所改善。损失函数是评估模型性能的关键工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

深度神经网络(Deep Neural Networks,DNN)是一种由多个隐藏层组成的神经网络模型。每个隐藏层由多个神经元组成,这些神经元通过权重和激活函数进行信息传递和计算。

深度神经网络通过多层的非线性变换,可以学习到更加抽象和复杂的特征表示。每一层都可以将输入数据转化为更高级的表示,从而更好地捕捉数据的特征和模式。通过不断叠加隐藏层,网络可以逐渐学习到更多的抽象特征,提高模型的表达能力。

深度神经网络在诸多领域中取得了重大突破和成功应用,如图像识别、语音识别、自然语言处理等。它能够处理大规模的数据,并具有强大的表示学习能力,能够自动提取和学习数据中的关键特征,从而实现更高水平的模式识别和预测能力。

然而,深度神经网络的训练也面临一些挑战,如梯度消失或梯度爆炸问题以及过拟合等。为了克服这些问题,出现了一些改进的深度神经网络结构和训练技巧,如卷积神经网络(CNN)、循环神经网络(RNN)、残差网络(ResNet)等。这些创新不断推动着深度神经网络的发展,并在各种领域中发挥着重要作用。

结构

神经网络层

首先通过图片来观察神经网络层的结构,第一张图是浅层神经网络,包括一个输入层,一个隐藏层和一个输出层。

  • 输入层:它所包含的神经元的个数等于单个实例所包含的特征数。只负责输入数据,没有激活函数。
  • 隐藏层:作用是提取特征,必须包含激活函数。
  • 输出层:它所包含的神经元的数目与标签的类别数有关,主要负责输出模型的预测值,它可以包含激活函数。

在这里插入图片描述

下图为深度神经网络,分为一个输出层,多个隐藏层和一个输出层。

在这里插入图片描述

神经元

神经元作为神经网络中最基本的单位,也有其独特的结构,如图所示,其中

  • x为输入,每一个连接上都有一个权重w,中间的节点为人工神经元节点;
  • δ是一个非线性变换,称为激活函数,目的是为了使人工神经元具有表示非线性关系的能力;
  • 参数b称之为偏置;output为人工神经元的输出。

在这里插入图片描述
公式如下:

在这里插入图片描述

激活函数

激活函数是神经网络中的一种非线性函数,作用于神经元的输入信号,将其转换为神经元的输出。激活函数在神经网络中起到了引入非线性变换的作用,增加了网络的表达能力。

激活函数的主要特点如下:

  • 非线性变换:激活函数对输入进行非线性变换,使得神经网络能够学习和表示非线性关系。如果没有激活函数,多个线性层堆叠起来的神经网络仍然只能表示线性关系。

  • 可微性:激活函数通常要求在大部分输入范围内是可导的,这是因为梯度下降等优化算法通常依赖于梯度的计算。可导的激活函数使得梯度可以传递并更新网络参数。

  • 非饱和性:一些激活函数具有非饱和性,即在输入较大或较小的情况下,能够保持较大的梯度,避免梯度消失问题。这有助于更好地传递误差信号和加速网络的收敛速度。

  • 映射范围:激活函数可以将输入信号映射到一定的输出范围内,如Sigmoid函数将输入映射到 (0, 1) 的范围内,而ReLU函数将负值映射为零。这有助于对输出进行限制或规范化。

常见的激活函数包括:

  1. Sigmoid函数:将输入映射到 (0, 1) 的范围内,具有平滑的非线性特性。
    在这里插入图片描述

  2. ReLU函数:在输入大于零时输出等于输入,小于零时输出为零,具有简单和高效的计算方式。
    在这里插入图片描述

  3. Tanh函数:将输入映射到 (-1, 1) 的范围内,形状与Sigmoid函数类似但对称。
    在这里插入图片描述

  4. Leaky ReLU函数:在输入小于零时引入一个小的斜率,避免了ReLU函数的部分问题。

  5. Softmax函数:用于多分类问题,在输出层将输入转化为概率分布。

三种激活函数的比较:
在这里插入图片描述

损失函数

损失函数是一个数学函数,用于衡量预测值与真实值之间的误差。它可以帮助我们确定模型的预测结果是否准确,并且可以用来评估模型的性能。

损失函数是深度学习中的一个关键因素,它可以帮助我们评估模型的性能并且用于调整模型的参数。选择合适的损失函数能够提高模型的性能,并有助于解决复杂的问题。

常见的损失函数:
在这里插入图片描述

内容来自视频:
深度神经网络的结构

03-08
### 关于深度神经网络的介绍及其应用 #### 深度神经网络概述 深度神经网络(Deep Neural Network, DNN)是一种多层的人工神经网络,旨在模仿人类大脑处理信息的方式。这种类型的网络由多个层次组成,每一层都能提取输入数据的不同特征[^1]。通过逐层抽象,DNN可以从原始数据中自动发现复杂的模式。 对于图像识别任务而言,卷积神经网络(CNN),作为一类特殊的DNN,在该领域表现出色。这类模型擅长捕捉空间上的局部关联特性,并能有效地减少参数数量从而降低过拟合风险[^2]。然而,由于其较高的计算需求,早期的应用场景主要集中在配备高性能GPU的工作站或服务器环境中。 除了CNN之外,还有其他几种重要的DNN变体适用于不同类型的任务: - **循环神经网络 (RNN)**:特别适合处理时间序列或其他形式的顺序数据,因为它具备记忆先前状态的能力,有助于理解上下文信息。 - **自编码器 (Autoencoder)** 和 **深度信念网(DBN)** :主要用于无监督学习环境下的特征抽取以及降维等问题解决上。 随着边缘计算的发展,现在可以在靠近数据源的地方部署小型化的DNN来进行实时推断,这不仅提高了响应速度也减轻了云端的压力[^3]。 #### 应用实例 在药物研发方面,基于分子结构预测活性的小分子定量构效关系(QSAR)研究中也开始广泛应用DNN方法。例如利用图卷积神经网络(Graph CNNs),可以直接作用于化学物质内部原子间的拓扑联系建模;而长短时记忆(LSTM)单元则可用于解析SMILES字符串表示法下的一维线性描述符[^4]。 另外,《针对组织切片中上皮细胞和间质区细胞的分类和分割的深度卷积神经网络》这篇文章展示了如何运用深层CNN对病理学图片实施精准区域划分类别判定工作,这对于辅助医生诊断疾病有着重要意义。 ```python import tensorflow as tf from tensorflow.keras import layers model = tf.keras.Sequential([ layers.InputLayer(input_shape=(None, None, 3)), # 输入形状取决于具体问题设置 layers.Conv2D(filters=64, kernel_size=7, activation='relu'), layers.MaxPooling2D(pool_size=(2, 2)), ... ]) ``` 上述代码片段提供了一个创建简单卷积神经网络的基础框架,可以根据实际应用场景调整各超参配置以优化性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值