题目一:
给定一个整数数组 nums
和一个整数目标值 target
,请你在该数组中找出 和为目标值 target
的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
思路:取出数组的第一个元素,依次和数组内其他元素比较看相加是否为Target,取出数组第二个元素依次和除了第一个元素比较看相加是否为Target,以此内推......... 我也是我想到的O()的笨办法.....
public static ArrayList<Integer> find(int arr[], int target){
ArrayList<Integer> result=new ArrayList<>();
for (int i = 0; i < arr.length; i++) {
for (int j=i+1; j < arr.length; j++) { //j的下表永远比i大1
if (arr[i] + arr[j] == target) {
result.add(i);
result.add(j);
return result;
}
}
}
return result;
}
同时题目要求给出时间复杂度为O(n)的方法
思路:可以使用一个字典(哈希表)来存储已经遍历过的元素及其索引,以便在内层循环中快速查找差值是否存在于字典中,从而将时间复杂度降低到O(n)
import java.util.ArrayList;
import java.util.HashMap;
public static ArrayList<Integer> find(int arr[], int target) {
// 创建一个ArrayList用于存储结果
ArrayList<Integer> result = new ArrayList<>();
// 创建一个HashMap,用于存储数组元素及其索引
HashMap<Integer, Integer> numIndices = new HashMap<>();
// 遍历整数数组
for (int i = 0; i < arr.length; i++) {
// 计算当前元素与目标值之间的差值
int complement = target - arr[i];
// 检查差值是否在HashMap中存在,如果存在,说明找到了两个元素的和等于目标值
if (numIndices.containsKey(complement)) {
// 将两个元素的索引加入结果ArrayList
result.add(numIndices.get(complement)); // 存储第一个元素的索引
result.add(i); // 存储第二个元素的索引
break; // 找到答案后,退出循环
}
// 将当前元素及其索引添加到HashMap中
numIndices.put(arr[i], i);
}
// 返回包含两个元素索引的结果ArrayList,如果没有找到答案,则ArrayList为空
return result;
}
使用HashMap来存储已经遍历过的数组元素以及它们的索引,以便在内层循环中快速查找差值是否存在于HashMap中。如果找到满足条件的索引,就将这两个索引加入结果ArrayList中并返回。如果没有找到满足条件的索引,返回一个空的ArrayList。
题目二
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n))
。
具体思路如下:
-
确保 nums1 数组的长度小于等于 nums2 数组的长度,如果不是,则交换它们,以确保总是对较短的数组进行二分查找。
-
使用二分查找在较短的数组中选择一个分割点,将较短的数组分为两部分,使得左边部分的元素都小于等于右边部分的元素。
-
在较长的数组中找到一个对应的分割点,使得左边部分的元素都小于等于右边部分的元素,同时要保证左边部分的元素个数等于右边部分的元素个数或多一个(当总元素个数为奇数时)。
-
计算中位数:如果总元素个数是偶数,则取两个分割点的右侧部分的最小值和左侧部分的最大值的平均值;如果总元素个数是奇数,则取两个分割点中的较大值。
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
// 确保 nums1 数组的长度小于等于 nums2 数组的长度,如果不是,则交换它们
if (nums1.length > nums2.length) {
int[] temp = nums1;
nums1 = nums2;
nums2 = temp;
}
int m = nums1.length; // nums1 数组的长度
int n = nums2.length; // nums2 数组的长度
int left = 0, right = m; // 二分查找的左边界和右边界
while (left <= right) {
int partitionX = (left + right) / 2; // 在 nums1 中选择的分割点
int partitionY = (m + n + 1) / 2 - partitionX; // 在 nums2 中对应的分割点
// 计算四个关键值,分别是分割点左侧的最大值 (maxX)、分割点左侧的最大值 (maxY)、
// 分割点右侧的最小值 (minX)、分割点右侧的最小值 (minY)
int maxX = (partitionX == 0) ? Integer.MIN_VALUE : nums1[partitionX - 1];
int maxY = (partitionY == 0) ? Integer.MIN_VALUE : nums2[partitionY - 1];
int minX = (partitionX == m) ? Integer.MAX_VALUE : nums1[partitionX];
int minY = (partitionY == n) ? Integer.MAX_VALUE : nums2[partitionY];
// 检查是否找到了合适的分割点,使得左侧部分的元素都小于等于右侧部分的元素
if (maxX <= minY && maxY <= minX) {
if ((m + n) % 2 == 0) {
// 总元素个数为偶数时,返回左侧部分的最大值和右侧部分的最小值的平均值
return (Math.max(maxX, maxY) + Math.min(minX, minY)) / 2.0;
} else {
// 总元素个数为奇数时,返回左侧部分的最大值
return Math.max(maxX, maxY);
}
} else if (maxX > minY) {
// 如果 maxX 大于 minY,说明分割点在 nums1 中太靠右,需要左移
right = partitionX - 1;
} else {
// 否则,分割点在 nums1 中太靠左,需要右移
left = partitionX + 1;
}
}
// 如果执行到这里,说明输入数组没有按照升序排列,抛出异常
throw new IllegalArgumentException("Input arrays are not sorted.");
}
这段代码使用二分查找来在两个已排序数组中找到中位数,同时处理了奇数和偶数个元素的情况
值得思考!