广度优先搜索算法的简单介绍

本文详细介绍了广度优先搜索算法的起源、工作原理、应用场景,包括社交网络推荐、迷宫问题求解等,并提供了C++和Java的代码示例,以及双向BFS在寻找最短路径中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

广度优先搜索算法

广度优先搜索算法(BFS)是一种用于图和树的搜索和遍历的算法,它的应用广泛且深受欢迎。本文将介绍广度优先搜索算法的起源、原理、应用、复杂度,以及通过C++和Java实现该算法。

1.介绍

起源

广度优先搜索算法最早由爱德华·福克斯在1951年提出,用于解决迷宫问题。后来,这一算法被广泛应用于计算机科学领域。

原理和思想

广度优先搜索算法的原理是从起始节点开始,逐层地向外扩展搜索,即先访问起始节点的所有相邻节点,然后再访问这些节点的相邻节点,依次类推,直到找到目标节点或者遍历完所有节点。该算法通常使用队列来实现,以确保按照层级顺序进行搜索。

2. 应用

广度优先搜索算法在现实生活中有许多应用(可能吧),例如:

  • 社交网络中的好友推荐:通过广度优先搜索算法可以找到与用户关系最近的好友,用于推荐好友或者扩展社交圈子。
  • 迷宫问题的解决:广度优先搜索算法可以帮助寻找迷宫中的最短路径,或者找到迷宫的出口。
  • 路径规划:在地图应用中,广度优先搜索算法可以用于寻找最短路径,规划行车路线或者公共交通路线。

3. 算法复杂度和优缺点

时间复杂度和空间复杂度

在最坏情况下,广度优先搜索算法的时间复杂度为O(V + E),其中V是节点数,E是边数。空间复杂度取决于队列的大小,通常为O(V)。

优缺点

在某些特定的图结构中,广度优先搜索算法的时间复杂度可能比深度优先搜索算法更低,尤其是在搜索最短路径时。然而,广度优先搜索算法的空间复杂度通常较高,尤其是在图的宽度较大时。与深度优先搜索算法相比,广度优先搜索算法通常更适合寻找最短路径或者层级遍历。

4. C++和Java实现

简单遍历输出

C++
				
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
					
vector<int> adj[100];
bool visited[100];

void bfs(int start) {
    queue<int> q;
    q.push(start);
    visited[start] = true;

    while (!q.empty()) {
        int v = q.front();
        q.pop();
        cout << v << " ";
        for (int u : adj[v]) {
            if (!visited[u]) {
                q.push(u);
                visited[u] = true;
            }
        }
    }
}

int main() {
    bfs(0);
    return 0;
}
Java实现
import java.util.LinkedList;
import java.util.Queue;

public class BreadthFirstSearch {
    static LinkedList<Integer>[] adj;
    static boolean[] visited;

    static void bfs(int start) {
        Queue<Integer> queue = new LinkedList<>();
        queue.add(start);
        visited[start] = true;

        while (!queue.isEmpty()) {
            int v = queue.poll();
            System.out.print(v + " ");
            for (int u : adj[v]) {
                if (!visited[u]) {
                    queue.add(u);
                    visited[u] = true;
                }
            }
        }
    }

    public static void main(String[] args) {        
        bfs(0);
    }
}

小优化

如果要优化可以使用双向BFS:同时从起始节点和目标节点开始搜索,直到两个搜索路径相遇,就是最短路径。这种方法可以显著减少搜索的时间复杂度,尤其是在寻找最短路径时,但前提是知道终点。定义两个队列,加个判断即可。但实际做起来还是有点复杂,根据题目不同有一定调整。

模拟迷宫问题

双向BFS:

//#include <bits/stdc++.h>
#include <iostream>
#include <queue>
#include <vector>

using namespace std;

// 定义迷宫的大小
const int N = 5;
const int M = 5;

// 定义迷宫
int maze[N][M] = {
    {0, 1, 0, 0, 0},
    {0, 1, 0, 1, 0},
    {0, 0, 0, 0, 0},
    {0, 1, 1, 1, 0},
    {0, 0, 0, 1, 0}
};

// 定义方向数组
int dir[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};

// 定义节点结构体
struct Node {
    int x, y, dist;
};

// 双向BFS函数
int bidirectionalBFS(Node start, Node end) {
    vector<vector<bool>> visitedFromStart(N, vector<bool>(M, false));
    vector<vector<bool>> visitedFromEnd(N, vector<bool>(M, false));

    queue<Node> qStart, qEnd;
    qStart.push(start);
    qEnd.push(end);

    visitedFromStart[start.x][start.y] = true;
    visitedFromEnd[end.x][end.y] = true;

    while (!qStart.empty() && !qEnd.empty()) {
        int ans = -1;

        ans = qStart.front().dist + qEnd.front().dist;

        if (ans <= 10) {
            return ans;
        }

        Node currentStart = qStart.front();
        qStart.pop();

        Node currentEnd = qEnd.front();
        qEnd.pop();

        for (int i = 0; i < 4; i++) {
            int newX = currentStart.x + dir[i][0];
            int newY = currentStart.y + dir[i][1];

            if (newX >= 0 && newX < N && newY >= 0 && newY < M && maze[newX][newY] == 0 && !visitedFromStart[newX][newY]) {
                visitedFromStart[newX][newY] = true;
                Node next = {newX, newY, currentStart.dist + 1};
                qStart.push(next);
            }
        }

        for (int i = 0; i < 4; i++) {
            int newX = currentEnd.x + dir[i][0];
            int newY = currentEnd.y + dir[i][1];

            if (newX >= 0 && newX < N && newY >= 0 && newY < M && maze[newX][newY] == 0 && !visitedFromEnd[newX][newY]) {
                visitedFromEnd[newX][newY] = true;
                Node next = {newX, newY, currentEnd.dist + 1};
                qEnd.push(next);
            }
        }
    }

    return -1; // 如果找不到路径,返回-1
}

int main() {
    Node start = {0, 0, 0};
    Node end = {4, 4, 0};

    int steps = bidirectionalBFS(start, end);

    if (steps != -1) {
        cout << "最短路径长度为:" << steps << endl;
    } else {
        cout << "有毛病!" << endl;
    }

    return 0;
}

编辑器润色了一下,自我感觉良好
部分内容百度
感谢阅读


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值