下面是一个简单的MATLAB代码示例,实现了Probabilistic Neural Network(PNN)算法。PNN是一种基于概率的神经网络,通常用于模式识别和分类任务。请注意,这只是一个基本的实现,实际应用中可能需要进行更多的调整和优化。
% 参数设置
spread = 1; % PNN的扩展参数
num_classes = 2; % 类别数
% 训练数据
X_train = [0 0; 0 1; 1 0; 1 1]; % 输入数据
y_train = [0; 1; 1; 0]; % 目标输出
% 测试数据
X_test = [0.5 0.5; 1.5 1.5];
% PNN训练
net = newpnn(X_train', y_train', spread);
% PNN预测
y_pred = sim(net, X_test');
disp('预测结果:');
disp(y_pred);
% Helper function to create and train a PNN
function net = newpnn(inputs, targets, spread)
net = newpnn(inputs, targets, spread);
net.trainParam.showWindow = false;
net = train(net, inputs, targets);
end
这个例子中,spread
参数用于控制PNN中模板的宽度,可以根据具体情况进行调整。num_classes
是类别的数量。训练数据和测试数据需要根据你的具体问题和数据集进行修改。
请注意,PNN通常在较小的数据集上表现良好,但对于大规模数据集,可能需要考虑使用其他更复杂的模型。根据你的具体任务,你可能需要调整PNN的参数或者选择其他算法。