PNN算法

下面是一个简单的MATLAB代码示例,实现了Probabilistic Neural Network(PNN)算法。PNN是一种基于概率的神经网络,通常用于模式识别和分类任务。请注意,这只是一个基本的实现,实际应用中可能需要进行更多的调整和优化。

% 参数设置
spread = 1;  % PNN的扩展参数
num_classes = 2;  % 类别数

% 训练数据
X_train = [0 0; 0 1; 1 0; 1 1];  % 输入数据
y_train = [0; 1; 1; 0];  % 目标输出

% 测试数据
X_test = [0.5 0.5; 1.5 1.5];

% PNN训练
net = newpnn(X_train', y_train', spread);

% PNN预测
y_pred = sim(net, X_test');

disp('预测结果:');
disp(y_pred);

% Helper function to create and train a PNN
function net = newpnn(inputs, targets, spread)
    net = newpnn(inputs, targets, spread);
    net.trainParam.showWindow = false;
    net = train(net, inputs, targets);
end

这个例子中,spread 参数用于控制PNN中模板的宽度,可以根据具体情况进行调整。num_classes 是类别的数量。训练数据和测试数据需要根据你的具体问题和数据集进行修改。

请注意,PNN通常在较小的数据集上表现良好,但对于大规模数据集,可能需要考虑使用其他更复杂的模型。根据你的具体任务,你可能需要调整PNN的参数或者选择其他算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值