《昇思25天学习打卡营第34天|快速入门》

昇思学习心得记录🚀

什么是昇思MindSpore?

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。简单来说,它能帮你在AI的世界里快速上手,从数据处理、模型训练到部署,一站搞定!

快速入门:深度学习模型例子

想要用MindSpore快速上手一个深度学习模型?来看这个例子吧!不过要注意,这里需要有一定的Python基础哦。

打开Jupyter笔记文档,在02-快速入门章节中,来试着学会如何使用MindSpore。

准备工作

下载和导入相关的依赖等环境
pip uninstall mindspore -y
pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

数据的处理

 MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。在本教程中,我们使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

模型训练


在模型训练中,一个完整的训练过程(step)需要实现以下三步: 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

定义正向计算函数。
使用value_and_grad通过函数变换获得梯度计算函数。
定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。

# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)


# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits


# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)


# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss


def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

然后我们还可以自己定义一个测试函数,来评估一下模型的性能。 

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
————————————————

保存模型

重新实例化模型对象,构造模型。

from datetime import datetime

import pytz

beijing_tz = pytz.timezone("Asia/shanghai")
current_beijing_time = datetime.now(beijing_tz)
formatted_time = current_beijing_time.strftime("%Y-%m-%d %H:%M:%S")
print("当前北京时间:", formatted_time, "lx123")

加载模型参数,并将其加载至模型上

现在小伙伴们应该已经初步了解并学会如何创建并训练一个简单的深度学习模型,明天见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖大瘦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值