昇思学习心得记录🚀
什么是昇思MindSpore?
昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。简单来说,它能帮你在AI的世界里快速上手,从数据处理、模型训练到部署,一站搞定!
快速入门:深度学习模型例子
想要用MindSpore快速上手一个深度学习模型?来看这个例子吧!不过要注意,这里需要有一定的Python基础哦。
打开Jupyter笔记文档,在02-快速入门章节中,来试着学会如何使用MindSpore。
准备工作
下载和导入相关的依赖等环境
pip uninstall mindspore -y
pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
数据的处理
MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理。在本教程中,我们使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。
模型训练
在模型训练中,一个完整的训练过程(step)需要实现以下三步: 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
参数优化:将梯度更新到参数上。
MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:
定义正向计算函数。
使用value_and_grad通过函数变换获得梯度计算函数。
定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)
# 1. Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# 3. Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
optimizer(grads)
return loss
def train(model, dataset):
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
然后我们还可以自己定义一个测试函数,来评估一下模型的性能。
def test(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
————————————————
保存模型
重新实例化模型对象,构造模型。
from datetime import datetime
import pytz
beijing_tz = pytz.timezone("Asia/shanghai")
current_beijing_time = datetime.now(beijing_tz)
formatted_time = current_beijing_time.strftime("%Y-%m-%d %H:%M:%S")
print("当前北京时间:", formatted_time, "lx123")加载模型参数,并将其加载至模型上
现在小伙伴们应该已经初步了解并学会如何创建并训练一个简单的深度学习模型,明天见