动态规划—背包问题

南昌理工学院acm集训队

目录

一、0/1背包问题

二、完全背包问题

三、多重背包问题


三种背包问题都有一个共同的限制,那就是背包容量,背包的容量是有限的,这便限制了物品的选择,而三种背包问题的共同目的,便是让背包中的物品价值最大。

杭电例题:hdu2602   hdu2546  hdu2955  hdu1203   hdu1171

一、0/1背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点:这是最简单的背包问题,特点是每个物品只有一件供你选择放还是不放。
① 二维解法
设f[i][j]表示前 i 件物品 总重量不超过 j 的最大价值 可得出状态转移方程
f[i][j]=max{f[i-1][j-v[i]]+w[i], f[i-1][j]}

​
代码: 
for(int i=1;i<=n;i++)
    for(int j=m;j>0;j--)
    {
        if(a[i]<=j)
           f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        else 
           f[i][j]=f[i-1][j];
    }

​

在一些情况下 题目的数据会很大 因此f数组不开到一定程度是没有办法ac。

②一维解法
设f[j]表示重量不超过j质量的最大价值 可得出状态转移方程
f[j]=max{f[j], f[j−v[i]]+w[i]}


 for(int i=1;i<=n;i++)
    {       
      for(int j=m;j>=a[i];j--)
          f[j]=max(f[j], f[j-v[i]]+w[i]);  
    }

二、完全背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点:题干看似与01背包一样 但它的特点是每个物品可以无限选用

设f[j]表示重量不超过j质量的最大价值 可得出状态转移方程

f[j] = max{f[j], f[j−k∗v[i]]+k∗w[i]}

代码:
for(int i=1;i<=n;i++)
    for(int  j = a[i];j <= m;j++){
        f[j] = max(f[j], f[j-v[i]]+w[i]);
    }

三、多重背包问题

问题描述:有n件物品和容量为m的背包 给出i件物品的重量以及价值 还有数量 求解让装入背包的物品重量不超过背包容量 且价值最大 。
特点 :它与完全背包有类似点 特点是每个物品都有了一定的数量

状态转移方程为:
f[j] = max{f[j], f[j−k∗v[i]]+k∗w[i] | 0 <= k*w[i] <= j  and  k <= n[i]}

多重背包问题通常可转化成01背包问题求解。但若将每种物品的数量拆分成多个1的话,时间复杂度会很高,从而导致TLE。所以,需要利用二进制优化思想。即:
一个正整数n,可以被分解成1,2,4,…,2^(k-1),n-2^k+1的形式。其中,k是满足n-2^k+1>0的最大整数。


例如,假设给定价值为2,数量为10的物品,依据二进制优化思想可将10分解为1+2+4+3,则原来价值为2,数量为10的物品可等效转化为价值分别为1*2,2*2,4*2,3*2,即价值分别为2,4,8,6,数量均为1的物品。
 



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值