Description
一辆汽车加满油后可行驶N公里。旅途中有若干个加油站。设计一个有效算法,指出应在哪些加油站停靠加油,使沿途加油次数最少。
Input
第一行有2 个正整数N和K(1 <= N <= 100,1 <= K< = 100),表示汽车加满油后可行驶N公里,且旅途中有K个加油站。接下来的1 行中,有K+1 个整数,表示第K个加油站与第K-1 个加油站之间的距离。第0 个加油站表示出发地,汽车已加满油。第K+1 个整数表示第K个加油站与目的地的距离。
Output
将编程计算出的最少加油次数输出。如果无法到达目的地,则输出
No Solution(注意:No和Solution之间有一个空格)
Sample Input
8 8 3 2 3 6 5 4 2 7 2
Sample Output
5
tips
①先判断输入中是否有直接走不到的情况
②都能走的到情况下,就车能走的到就不加油,下一站再加,走不到就加油。
贪心思想就是局部的最优解,每一步的操作都会对结果存在影响,一般都是处理一维的问题,后面接触动态规划就能明白二者差别了。
Source
#include<cstdio>
#include<vector>
using namespace std;
int main() {
int n, result = 0, k;
int tmp, flag = 0;
scanf("%d%d", &n,&k);
int res = n;
vector<int>num;
for (int i = 0; i <= k; i++) {
scanf("%d", &tmp);
if (tmp > n) {
printf("No Solution");
flag = 1;
break;
}
num.push_back(tmp);
}
if (flag == 0) {
for (int i = 0; i <= k; i++) {
if (res >= num[i])
res -= num[i];
else {
res = n - num[i];
result++;
}
}
printf("%d", result);
}
return 0;
}