[普通物理] 振动的能量和振动的合成

本文探讨了简谐运动中动能和势能的周期性变化,强调在弹簧振动过程中,动能和势能如何在最大值和最小值之间转换。在平衡位置,动能达到最大,势能为零;而在最大形变处,势能最大,动能最小。平均动能和势能与总机械能的关系也得以阐述,它们均等于总机械能的一半。此外,文章还提及了频率的概念及其在振动合成中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.振动的能量

1.1动能和势能的周期

这里直接给出结论:
在这里插入图片描述

1.2动能和势能的变化过程

在这里插入图片描述

此时弹簧压缩达到最大,此时弹性势能达到最大,而动能为0
在这里插入图片描述
此时物体到达平衡位置,这时弹簧的形变为0,那么弹性势能为0,动能达到最大

在这里插入图片描述

此时弹簧拉伸到最大,形变量也是最大,此时弹性势能为最大,动能为最小

整体来说,不考虑能量损失,就是弹性势能和动能之间的相互转化

1.3 平均动能和平均势能

在这里插入图片描述
图:
在这里插入图片描述
其中粉红色为位移曲线,而势能和动能的曲线的周期为简谐运动的一半(途中可以看出)
而当粉红色达到最高点,意味着位移达到最大值,此时应该是势能最大,而位移为零时,此时的动能最大。
当他们到达最大时,等于总机械能,他们的平均势能和平均动能都为总机械能的一半。

2 同一直线上同频率的谐振动的合成

频率是单位时间内完成周期性变化的次数,是描述周期运动频繁程度的量,常用符号f或ν表示,单位为秒分之一,符号为s-1。 为了纪念德国物理学家赫兹的贡献,人们把频率的单位命名为赫兹,简称“赫”,符号为Hz。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

习题

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值