大学物理复习笔记:机械振动基础

机械振动基础

一、简谐振动

  1. 简谐振动

    (1)简谐运动的定义:

    ①动力学定义

    物体受到线性恢复力作用: F = − k x F=-kx F=kx

    则:
    m d 2 x d t 2 = − k x 令 k m = ω 2 d 2 x d t 2 + ω 2 x = 0 m\frac{d^2x}{dt^2}={-kx}\\ 令\frac{k}{m}=\omega^2\\ \frac{d^2x}{dt^2}+\omega^2x=0 mdt2d2x=kxmk=ω2dt2d2x+ω2x=0
    ②动力学方程定义

    上式微分方程求解得到:
    x = A c o s ( ω t + φ ) , 其 中 A 和 φ 为 常 数 x=Acos(\omega{t}+\varphi),其中A和\varphi为常数 x=Acos(ωt+φ)Aφ

  2. 谐运动的振幅,周期,频率和相位

    (1)振幅:物体离开平衡位置的最大距离;取正值,反应振动的强度,由初始状况决定

    (2)周期和频率
    周 期 : T = 2 π ω = 2 π m k 频 率 : v = 1 T = 1 2 π k m 周 期 频 率 表 示 下 的 谐 振 动 方 程 : x = A c o s ( 2 π T t + φ ) = A c o s ( 2 π v t + φ ) 周期:T=\frac{2\pi}{\omega}=2\pi\sqrt\frac{m}{k}\\ 频率:v=\frac{1}{T}=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\\ 周期频率表示下的谐振动方程:x=Acos(\frac{2\pi}{T}t+\varphi)=Acos(2\pi{v}t+\varphi) T=ω2π=2πkm v=T1=2π1mk x=Acos(T2πt+φ)=Acos(2πvt+φ)

    (3)相位

    ω t + φ \omega{t}+\varphi ωt+φ称为相位,常量 φ \varphi φ是t=0时的相位
    时 间 : 0 → t 相 位 : 0 → 2 π 时间:0\rightarrow{t}\\ 相位:0\rightarrow{2\pi} 0t02π

  3. 振动参量的确定

    (1) ω , T , v \omega,T,v ω,T,v:描写振动快慢的参量,由系统本身确定
    弹 簧 振 子 : ω = k m , T = 2 π m k 单 摆 : ω = g l , T = 2 π l g 复 摆 : ω = m g l J , T = 2 π J m g l 弹簧振子:\omega=\sqrt{\frac{k}{m}},T=2\pi\sqrt{\frac{m}{k}}\\ 单摆:\omega=\sqrt{\frac{g}{l}},T=2\pi\sqrt{\frac{l}{g}}\\ 复摆:\omega=\sqrt{\frac{mgl}{J}},T=2\pi\sqrt{\frac{J}{mgl}} ω=mk ,T=2πkm ω=lg ,T=2πgl ω=Jmgl ,T=2πmglJ
    (2) A , φ A,\varphi A,φ:描写振动状态,由初始条件决定
    t = 0 时 ? { x 0 = ? v 0 = ? 解 出 A 和 φ t=0时?\begin{cases} x_0=?\\ v_0=?\\ \end{cases}\\ 解出A和\varphi t=0{x0=?v0=?Aφ
    (3)推论:

    若振动系统除了受弹性力外,还受一恒力作用,则系统的振动规律不变,但坐标原点要取在新的平衡位置

在这里插入图片描述

上述振动均为简谐振动,周期和角速度相同
ω = k m ; T = 2 π m k \omega=\sqrt{\frac{k}{m}};T=2\pi\sqrt{\frac{m}{k}} ω=mk ;T=2πkm
但平衡位置改变。

  1. 谐振动的能量

    E = E k + E p x = A c o s ( ω t + φ ) v = − A ω s i n ( ω t + φ ) E k = 1 2 m v 2 = 1 2 m A 2 ω 2 s i n 2 ( ω t + φ ) E p = 1 2 k x 2 = 1 2 k A 2 c o s 2 ( ω t + φ ) ω = k m E=E_k+E_p\\ x=Acos(\omega t+\varphi)\\ v=-A\omega sin(\omega t+\varphi)\\ E_k=\frac{1}{2}mv^2=\frac{1}{2}mA^2\omega^2sin^2(\omega t+\varphi)\\ E_p=\frac{1}{2}kx^2=\frac{1}{2}kA^2cos^2(\omega t+\varphi)\\ \omega=\sqrt{\frac{k}{m}} E=Ek+Epx=Acos(ωt+φ)v=Aωsin(ωt+φ)Ek=21mv2=21mA2ω2sin2(ωt+φ)Ep=21kx2=21kA2cos2(ωt+φ)ω=mk

    有上面推导可以得到:
    E = E k + E p = 1 2 k A 2 E=E_k+E_p=\frac{1}{2}kA^2\\ E=Ek+Ep=21kA2

    • E ∝ A 2 E∝A^2 EA2在简谐运动中普遍成立
    • 做一次全振动 E k E_k Ek E p E_p Ep转换2次(即:能量转换周期等于 1 2 \frac{1}{2} 21振动周期)
    • 在一个周期内,平均动能和平均势能相等
  2. 谐运动的旋转矢量表示法

    作图和表示不再赘述,注意求时间时,用下面的公式即可:
    2 π T = Δ φ Δ t \frac{2\pi}{T}=\frac{\Delta{\varphi}}{\Delta{t}} T2π=ΔtΔφ

  • 利用相差比较两振动(同频)的步调是否一致
    x 1 = A c o s ( ω t + φ 1 ) x 2 = A c o s ( ω t + φ 2 ) x_1=Acos(\omega t+\varphi_1)\\ x_2=Acos(\omega t+\varphi_2)\\ x1=Acos(ωt+φ1)x2=Acos(ωt+φ2)

$$
(\omega t+\varphi_1)-(\omega t+\varphi_1)=\varphi_2-\varphi_1=
\begin{cases}
2k\pi
(2k+1)\pi

0,x_2比x_1
<0,x_2比x_1
\end{cases}
$$

  • 弹簧的串并联

    并联: k = k 1 + k 2 k=k_1+k_2 k=k1+k2

    串联: k = k 1 k 2 k 1 + k 2 k=\frac{k_1k_2}{k_1+k_2} k=k1+k2k1k2

    推论:n个相同的弹簧串联 k = k 0 n k=\frac{k_0}{n} k=nk0

    n个相同的弹簧并联: k = n k 0 k=nk_0 k=nk0

  1. 几种常见的谐振动

    (1)单摆
    M = J β − m g l s i n θ = m l 2 d 2 θ d t 2 ∴ d 2 θ d t 2 + g l θ = 0 令 ω 2 = g l ; 则 有 θ = θ A c o s ( ω t + φ ) T = 2 π l g ; θ A 为 振 幅 , φ 为 初 相 M=J\beta\\ -mglsin\theta=ml^2\frac{d^2\theta}{dt^2}\\ ∴\frac{d^2\theta}{dt^2}+\frac{g}{l}{\theta}=0\\ 令\omega^2=\frac{g}{l};则有\theta=\theta_Acos(\omega t+\varphi)\\ T=2\pi\sqrt{\frac{l}{g}};\theta_A为振幅,\varphi为初相 M=Jβmglsinθ=ml2dt2d2θdt2d2θ+lgθ=0ω2=lg;θ=θAcos(ωt+φ)T=2πgl ;θAφ
    (2)复摆(物理摆)

二、谐运动的合成

两列波相遇,相遇区域的任意质点的振动是二振动的叠加

1、同方向,同频率的谐振动的合成

同方向指的是:同在x(y)轴上振动;

在这里插入图片描述

任意时刻,两个振动的位移分别是:
x 1 = A 1 c o s ( ω t + φ 1 ) x 2 = A 2 c o s ( ω t + φ 2 ) x = x 1 + x 2 x_1=A_1cos(\omega t+\varphi_1)\\ x_2=A_2cos(\omega t+\varphi_2)\\ x=x_1+x_2 x1=A1cos(ωt+φ1)x2=A2cos(ωt+φ2)x=x1+x2
经过变量替换后得到:
x = A c o s ( ω t + φ ) x=Acos(\omega t+\varphi) x=Acos(ωt+φ)
振幅和相位变换:
A = A 1 2 + A 2 2 + 2 A 1 A 2 ( c o s φ 2 − c o s φ 1 ) φ = a r c t a n A 1 s i n φ 1 + A 2 s i n φ 2 A 1 c o s φ 1 + A 2 c o s φ 2 ω 不 变 A=\sqrt{A_1^2+A_2^2+2A_1A_2(cos\varphi_2-cos\varphi_1)}\\ \varphi=arctan\frac{A_1sin\varphi_1+A_2sin\varphi_2}{A_1cos\varphi_1+A_2cos\varphi_2}\\ \omega不变 A=A12+A22+2A1A2(cosφ2cosφ1) φ=arctanA1cosφ1+A2cosφ2A1sinφ1+A2sinφ2ω

当 Δ φ = { 2 k π 时 : 同 相 合 成 A = A 1 + A 2 ( 2 K + 1 ) π 时 : 反 相 合 成 A = ∣ A 1 − A 2 ∣ 当\Delta\varphi=\begin{cases} 2k\pi时:同相合成A=A_1+A_2\\ (2K+1)\pi时:反相合成A=|A_1-A_2|\\ \end{cases} Δφ={2kπA=A1+A2(2K+1)πA=A1A2

2.同方向不同频率的谐振动合成

(1)一般情况
x 1 = A 1 c o s ( ω 1 t + φ ) x 2 = A 2 c o s ( ω 2 t + φ ) 设 A 0 = A 1 = A 2 ; φ 1 = φ 2 = 0 ( 不 影 响 结 果 的 普 适 性 ) x = x 1 + x 2 = 2 A 0 c o s ( ω 2 − ω 1 2 ) t ⋅ c o s ( ω 2 + ω 1 2 ) t 一 般 情 况 下 不 具 有 周 期 性 , 不 是 谐 振 动 x_1=A_1cos(\omega_1 t+\varphi)\\ x_2=A_2cos(\omega_2 t+\varphi)\\ 设A_0=A_1=A_2;\varphi_1=\varphi_2=0(不影响结果的普适性)\\ x=x_1+x_2=2A_0cos(\frac{\omega_2-\omega_1}{2})t·cos(\frac{\omega_2+\omega_1}{2})t\\ 一般情况下不具有周期性,不是谐振动 x1=A1cos(ω1t+φ)x2=A2cos(ω2t+φ)A0=A1=A2;φ1=φ2=0()x=x1+x2=2A0cos(2ω2ω1)tcos(2ω2+ω1)t
(2)特例:拍

∣ ω 2 − ω 1 ∣ < < ω 1 + ω 2 |\omega_2-\omega_1|<<\omega_1+\omega_2 ω2ω1<<ω1+ω2时,相减的那一项很缓慢。我们将振动方程变化为:
A = ∣ 2 A 1 c o s 1 2 ( ω 2 − ω 1 ) t ∣ x = A c o s ( ω 1 + ω 2 2 ) t A=|2A_1cos\frac{1}{2}(\omega_2-\omega_1)t|\\ x=Acos(\frac{\omega_1+\omega_2}{2})t A=2A1cos21(ω2ω1)tx=Acos(2ω1+ω2)t
所以:
合 振 动 振 幅 : A m a x = 2 A 0 合 振 动 的 圆 频 率 : ω = ω 1 + ω 2 2 合振动振幅:A_{max}=2A_0\\ 合振动的圆频率:\omega=\frac{\omega_1+\omega_2}{2} Amax=2A0ω=2ω1+ω2
拍频 : 单位时间内合振动振幅强弱变化的次数,即
v = ∣ ( ω 2 − ω 1 ) / 2 π ∣ = ∣ v 2 − v 1 ∣ v=|(\omega_2-\omega_1)/2\pi|=|v_2-v_1| v=(ω2ω1)/2π=v2v1

3、相互垂直的谐振动的合成

(1)初相差 Δ φ \Delta\varphi Δφ为0,同相合成
x = A s i n ω t y = B s i n ω t x=Asin\omega t\\ y=Bsin\omega t\\ x=Asinωty=Bsinωt
轨迹方程: y = B A x y=\frac{B}{A}x y=ABx

(2)初相差 Δ φ \Delta\varphi Δφ π \pi π,反相合成
x = A s i n ω t y = B s i n ( ω t + π ) x=Asin\omega t\\ y=Bsin(\omega t+\pi)\\ x=Asinωty=Bsin(ωt+π)
(3)初相差为 π 2 \frac{\pi}{2} 2π时,轨迹为一椭圆,顺时针转,初始位置在(0,B)

(4)初相差为 − π 2 -\frac{\pi}{2} 2π时,轨迹为一椭圆,逆时针转,初始位置在(0,-B)

4、互相垂直频率不同的谐振动的合成

x = A s i n ω t y = B s i n ( ω t + π ) x=Asin\omega t\\ y=Bsin(\omega t+\pi)\\ x=Asinωty=Bsin(ωt+π)
(3)初相差为 π 2 \frac{\pi}{2} 2π时,轨迹为一椭圆,顺时针转,初始位置在(0,B)

(4)初相差为 − π 2 -\frac{\pi}{2} 2π时,轨迹为一椭圆,逆时针转,初始位置在(0,-B)

4、互相垂直频率不同的谐振动的合成

在这里插入图片描述

横、纵边切点数比=纵、横方向振动频率之比

  • 12
    点赞
  • 103
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
大学物理手写笔记的PDF文件是一种将传统纸质笔记转换成电子版的方法。通常,学生在上课时会用手写笔或者数位板记录老师讲解的内容和自己的理解,然后使用扫描仪或拍照软件将这些手写笔记转换成PDF格式。这种方法有一些优势。 首先,将手写笔记转换成PDF可以有效地保留学生的思考过程和灵感。相比于直接用电脑打字记录,手写笔记更加自由和灵活。在物理学这门科学中,图表和图像是非常重要的,手写笔记可以更好地表达这些信息。通过手写笔记,学生可以更好地理解和记录实验过程和结果,更加有助于知识的巩固和加深。 其次,使用PDF格式方便学生进行分享和整理。学生可以将手写笔记的PDF文件传输到电子设备上,如手机、平板电脑或电脑上,便于随时查看和学习。此外,学生可以使用各种PDF阅读器或学习应用程序对笔记进行标记、高亮和添加注释,方便回顾和复习。同时,学生可以方便地将手写笔记PDF整理成章节或主题,形成一个完整的学习资料库,方便自己和其他同学使用。 最后,将手写笔记转换成PDF文件是一种环保的选择。纸质笔记需要大量的纸张和墨水,会对环境造成不必要的浪费和负担。而转换成PDF文件后,可以节省纸张和墨水的消耗,有利于可持续发展。 总结而言,大学物理手写笔记的PDF文件可以保留学生的思考过程和灵感,方便学生分享和整理,同时也是一种环保的选择。对于学习物理的学生而言,这种方式具有很多优势,可以提高学习效果和便利性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值