P1356 数列的整除性(动态规划)

luogu 链接:https://www.luogu.com.cn/problem/P1356

我第一次看完题目以后只,想到了bfs,想着搜索,看能不能搜到符合题意的情况。

但是仔细一想是不行的,因为bfs里每次对队头处理都是相同的操作,但是这个题要求前一个数加上或者减去后一个数,用bfs并不能很好的处理这种情况。

然后看了题解发现居然可以用dp解,不得不说dp功能很是强大

用二维数组f[i][j]表示前i个数的各种组合是否可以出现余数为j的情况,因此f数组作为集合属性存储的是1或0两种状态。

因此状态转移方程就很简单了:f[i][j] = f[i-1][((j+a[i])%k+k)%k] || f[i-1][((j-a[i])%k+k)%k];

这里需要注意两点:

1.使用(x%k+k)%k的方式是为了避免出现非负数

2.后面两者的关系是取或,只要有一方满足即为真

初始化:当然是只选第一个数的情况,需要注意的是第一个数无论如何选都为真

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[10001][1001],a[10001];
int n,k,w;
int main()
{
	cin>>w;
	while(w--)
	{
		memset(a,0,sizeof a);
		memset(f,0,sizeof f);
		cin>>n>>k;
		for(int i=1;i<=n;i++) cin>>a[i];
	
		f[1][(a[1]%k+k)%k] = f[1][(-a[1]%k+k)%k] = 1;
	
		for(int i=2;i<=n;i++)
			for(int j=0;j<k;j++)
				f[i][j] = f[i-1][((j+a[i])%k+k)%k] || f[i-1][((j-a[i])%k+k)%k];
			
		if(f[n][0]) cout<<"Divisible"<<endl;
		else cout<<"Not divisible"<<endl;
	}
	return 0;	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值