luogu 链接:https://www.luogu.com.cn/problem/P1356
我第一次看完题目以后只,想到了bfs,想着搜索,看能不能搜到符合题意的情况。
但是仔细一想是不行的,因为bfs里每次对队头处理都是相同的操作,但是这个题要求前一个数加上或者减去后一个数,用bfs并不能很好的处理这种情况。
然后看了题解发现居然可以用dp解,不得不说dp功能很是强大
用二维数组f[i][j]表示前i个数的各种组合是否可以出现余数为j的情况,因此f数组作为集合属性存储的是1或0两种状态。
因此状态转移方程就很简单了:f[i][j] = f[i-1][((j+a[i])%k+k)%k] || f[i-1][((j-a[i])%k+k)%k];
这里需要注意两点:
1.使用(x%k+k)%k的方式是为了避免出现非负数
2.后面两者的关系是取或,只要有一方满足即为真
初始化:当然是只选第一个数的情况,需要注意的是第一个数无论如何选都为真
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[10001][1001],a[10001];
int n,k,w;
int main()
{
cin>>w;
while(w--)
{
memset(a,0,sizeof a);
memset(f,0,sizeof f);
cin>>n>>k;
for(int i=1;i<=n;i++) cin>>a[i];
f[1][(a[1]%k+k)%k] = f[1][(-a[1]%k+k)%k] = 1;
for(int i=2;i<=n;i++)
for(int j=0;j<k;j++)
f[i][j] = f[i-1][((j+a[i])%k+k)%k] || f[i-1][((j-a[i])%k+k)%k];
if(f[n][0]) cout<<"Divisible"<<endl;
else cout<<"Not divisible"<<endl;
}
return 0;
}