luogu 链接:https://www.luogu.com.cn/problem/P1077
本来我是没有想到背包问题求方案数的
而是直接分析状态转移方程写出核心代码以后才恍然大悟
首先我们用一个二维数组来储存状态:f[i][j]表示前i种花里一共摆j盆的方案数目
那么很容易想到枚举到第i种花的时候方案数都是由摆前i-1种花的情况继承而来的
所以我们只需要考虑第i种花怎么摆,也就是第i种花怎么摆的问题
需要注意的是不是每种花都必须摆出来,某些种类的花在其他种类的花可以摆够的情况下是可以一盆都不摆的
那么我们可以据此写出状态转移方程:f[i][j]=f[i-1][j-0]+f[i-1][j-1]+…+f[i-1][j-num[i]]
即f[i][j]=∑f[i-1][j-k] (k从0到num[i],且j>=k)
然后我们根据状态转移方程考虑核心代码怎么写
由于转移方程中是这种花继承上一种花的摆放情况,而第一种花自然是不能继承的,所以我们要从第二种花开始循环,也就是要提前预处理出来第一种花的摆放情况
在循环j的时候,j一定不能从0开始,因为f[i][j]数组记录的是前i盆花一共摆了j盆的情况,j是总数,所以不论i是多少,凡是j等于0的情况,种类数目一共就只有1种,不会再多,更不可能叠加!所以我们要预处理出来j为0的所有情况
第三层需要我们循环决策,也就是第i盆花要摆多少种
当然是可以一盆都不摆的,所以k可以从0开始,k的范围不能超过第i种花的个数,也不能超过j
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m; //一共m个位置,n种花
int num[10010];
int f[1100][1100];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>num[i];
//三层循环可以a
for(int i=0;i<=num[1];i++) f[1][i] = 1;
for(int i=1;i<=n;i++) f[i][0] = 1;
for(int i=2;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=0;k<=num[i] && k<=j;k++)
f[i][j] = (f[i][j]+f[i-1][j-k])%1000007;
cout<<f[n][m];
return 0;
}