离散数学复习

第一章

命题必须是断言
**仅当-> 1 -> 0 才为假 ** 仅当后面为结果,例如仅当A,B 为B->A

当且仅当<->,第一个当表示充分条件,第二个表示必要条件

重言式(永真式) 矛盾式(永假式)既不是重言式也不是矛盾式,叫偶然式

所有指派全为真则为永真式,if有->则为永真蕴含式,if是<->则为永真式

证明永真蕴含式,前真则后真,后假则前假

情况并非如此 就是在加个非

用非和与表示可以先求出用或表示的表达式,再非一下

有的式子化简结果不等,可以 与(P或非P)

对偶规则:不会改变变元,非不变化, 只变与,或,量词

析取范式:基本积之和
合取范式:基本和之积
P既是基本和也是基本积
在这里插入图片描述
极小项:在基本积中,每个变元必出现一次,且仅出现一次,n个变元有2的n次方个极小项

极小项之为主析取范式,加非为0,反之为1
注意补全

极大项:在基本和中,。。。
非为1,反之为0

注意!!!求出主析取范式之后,直接就数字就可以找主合取范式,例如主析取范式{0,1,2,7} 主合取范式就为{3,4,5,6} ,数字不一样,但范式里的每个变元的非情况可能相同

P29 CP规则,证明蕴含式可能会用到

反证法 很有用P30 将结论取反当作条件使用,最终证明出A与上非A即可

个体:张三 3等 代表个体的变元位个体变元
谓词描述个体性质或者个体间的关系,有几个个体变元就是几元谓词
论述域:个体变元的取值范围位个体域空集不能作为论述域
命题是0元谓词
在谓词前进行量化后,命题的真假与论述域有关(先看论述域)!!!
存在y,y=3 不一定为真,如果论述域>3,就是错的
全总个体域:包含所有个体

针对全总个体域,M(x)是人,是特征谓词(刻画论述对象具有人的特征)特征谓词加入断言中有两个条件:(P37)
对于全称量词,特征谓词作为蕴含式前件加入
而对于存在量词,作为合取式加入

原子公式:不含命题联结词(非,与,或等)

紧接量词后的最小子公式为量词的辖域

存在x,或者任意x时,辖域内的x(注意必须是x,如果辖域内出现y但没有存在y等,y仍是自由变元)为约束变元,辖域外的为自由变元。

否定词可通过量词深入辖域

证明式子不等价,可以用直接举反例

注意量词辖域的扩张与收缩 量词分配的恒等式(任意与,存在或为恒等式) CP规则 Q1

量词的次序很重要!

改名规则只能用于约束变元,代入规则只能用于自由变元(原式为永真式,代入仍是永真式,原式为非永真式,代入可能变化)。

去量词时,该量词必须是公式的最左边的量词,且此量词的前边无任何符号, 它的辖域作用到公式末尾。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oSwActYF-1654527431830)(C:\Users\fanshihao\AppData\Roaming\Typora\typora-user-images\image-20220526210931066.png)]

US :

ES: 不能是前面推导的自由变元,也不能是ES本身引入的表面自由变元

EG:

UG: 1. x都不是自由的,也不能是由ES引入的 2. 如果US引入自由变元x后,ES引入新变元y且自由出现,则不能用UG

US和ES用于删除量词,使用ES而产生的变元不能保留在结论中,因为这只是暂时的假设

如果推导过程中既要用US又要用ES,则先处理存在ES,在使用US

集合和二元关系

集合的并和交是可交换,可结合具有分配率

自然数(0,1,2,3…)N 正整数N+

实数R

整数I

五种运算 并 交 差(-) 补

n个元素的集合A,其**幂集(集合A中所有子集的集合)**的元素个数为2的n次方

n重组的第一个分量为n-1重组

集合的笛卡尔乘积运算不可交换,也无结合律

自反:集合中的每一个元素,自己都和自己存在关系(关系矩阵对角线都为1)

反自反:集合中的每个元素,都和自己没关系(对角线都为0)

有些既不是自反,也不是反自反

对称:对任意两元素,既有xRy,又有yRx(关于对角线对称)

反对称:对任意两元素,没有xRy,又有yRx(如果aij=1且i != j,则aji=0,但如果aij=0,不一定aji=1

空关系既是对称又是反对称,相等关系也是(aij没有等于1的)

传递:如果xRy, yRz,有xRz(关系矩阵无规律) 但如果前件为假(R{<1,2>,<1,3>},找不到xRy和yRz),则也具有传递性

相等关系:自反,对称,反对称,传递但不反自反

非空集合的空关系(非空集合中有元素属于A,所以自反和反自反的前件都为真(自反的条件为),其余前件都为假):反自反,对称,反对称,传递,但不自反

空集合的空关系(没有元素属于空集合(不含任何元素的集合为空集合空集合不包含空集),所有前件都为假):自反,反自反,对称,反对称,可传递

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NVYmlnBk-1654527431831)(C:\Users\fanshihao\AppData\Roaming\Typora\typora-user-images\image-20220527171548074.png)]

关系的合成满足结合律

关系矩阵乘法可结合

逆关系:关系R是从A到B,而逆关系则是从B到A的关系

空关系的逆还是空关系

3.4次序关系

偏序集合:自反,反对称,传递

为什么哈斯图可以表示偏序关系:偏序关系具有反对称性,所以可以用无向图来表示,而且又有传递关系,不用画多余的传递边

哈斯图画法

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IS7vi0By-1654527431832)(C:\Users\fanshihao\AppData\Roaming\Typora\typora-user-images\image-20220527191654471.png)]

哈斯图的画法,以及利用哈斯图寻找极大元之类 - 知乎 (zhihu.com)

确定最大元最小元之前,先判断极大元和极小元:在子集B中,最上面一行为极大值,最下面一行为极小值,且都不唯一

再判断最大元和最小元:如果极大(小)值唯一,则最大(小)值存在,否则不存在

最大元最小元如果存在,那必唯一

上界和下界:注意两者必须有关系!!!,如{6,12,24}的上界没有36,因为和24无关

注意!!!所选的上下界都必须和子集中的所有元素有关系,可能不是子集的,也可能包含子集

极大元极小元一定存在 最大元,最小元,上下界不一定存在

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yNSUyvlo-1654527431834)(C:\Users\fanshihao\AppData\Roaming\Typora\typora-user-images\image-20220527193458015.png)]

最小上界和最大下界:上界里面最小的和下界里面最大的

如果有最大元,则一定是最小上界,最小元同理

img

子集为{2,6,8}时

上界为24 12,36不是上界,因为都和8没有关系

下界为1 2 3和2,8无关,不是

拟序集合:集合A上的二元关系R是反自反,反对称,传递 例如实数集合中的<关系

线序集合:对于偏序集合A中,任意两个元素都有关系 哈斯图就是一条链,无分支

良序集合:A上的二元关系R是一线序,则A的每一个非空字节都有最小元素(极小元素存在且唯一),则R叫做A的良序。

每个有限线序集合是良序的

3.5等价关系

等价关系R是自反,对称,传递的。

模k等价:其含义为等价类里面的任何数,模k之后都相等。k为几就有几个等价类

等价类:与集合A中x具有R关系的y的组成集合,其中R是等价关系

不同等价类的个数称为R的
集合A的等价关系,要么相等,要么不相交

集合的覆盖与划分

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ylBKvdVS-1654527431835)(file:///C:\Users\fanshihao\Documents\Tencent Files\1360532588\Image\C2C\Image1\7S3DXDIHU8C535ZC8T%}7.png)]

代数

第六章 代数

单射函数(一对一,但B中可以有多余元素没有被A指向,但如果指向了必须只有A中的一个元素指向B):
在这里插入图片描述
在这里插入图片描述
满射:B中元素至少一个相对的A的元素
在这里插入图片描述
双射:满足单射和满射,真正意义上的一对一
在这里插入图片描述

代数是一集合,运算封闭,具有代数常元

幺元与任何元素运算都是其元素本身

零元与任何元素运算都是零元 零元不存在逆元

左右幺元是对集合中是所有元素来说的

左幺元和右幺元相等则存在幺元,顺序搞清楚

零元同理

一个运算的幺元和零元是唯一的

逆元:xy=1,x是y的左逆元,y是x的右逆元,1是幺元
若xy=1 y*x=1同时成立则x是y的逆元(y也是x的逆元)

对于每一个元素,如果元素存在逆元,则唯一

可逆一定可约,但可约不一定可逆

子代数运算封闭,基本是原集合的子集,代数常元在子集中,但原集合的代数常元不一定是子集的代数常元

子代数一定存在,最大是它本身

6.3 同态

同态:存在一双射函数h

映射h为A到A撇的同构(双射函数)

A与A撇同构,ARA撇,R是二元关系

若h不是双射函数,只是一普通函数,其余与同构条件相同,则h是从A到A撇的同态

若h是单射函数,则称h为单一同态

若h是满射函数,则称h为满同态

双射就是同构

若A=A撇 则称h为自同态

若A=A撇并且h是同构 则称h为自同构

6.4 同余关系

同余关系是等价关系的一种,它需要具备等价关系的特点,即传递,对称,自反除了具有等价关系的特点,还需要有已知ab,则a*cb*c且c*a~c*b,*是代数A中的关系

相等关系是任何代数上的同余关系

6.6 半群和独异点

具有结合律的代数称为半群 子半群是半群

半群含幺元称为独异点(含幺半群) 子独异点也是独异点

加法和乘法符合结合率,减法和除法不符合(不一定,主要看集合)

若运算可交换,则为可交换半群

在任何可交换独异点S中,S等幂元素的集合T可构成子独异点

在半群中,等幂元素可能不止一个,但在群中,幺元是唯一等幂元素

生成元(不是幺元,但幺元为生成元的0次幂) 如果在独异点中,存在一个元素a属于S,a可以表示S中其余任何元素,则该独异点为循环独异点,a为生成元,由生成元生成循环独异点

并不是所有的独异点都具有生成元。但循环独异点都是可交换的,即为可交换独异点

独异点的子半群(只要求集合T属于S就行)可以是个独异点

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eu2E5Kj-1654527431836)(C:\Users\fanshihao\AppData\Roaming\Typora\typora-user-images\image-20220604181246928.png)]

群中只有幺元是等幂的。

6.7 群

群的定义:除了具有半群(可结合)和独异点(存在幺元)的性质外,还具有一性质:每个元素都存在逆元的代数系统

群还具有消去律

幺元是群中唯一的等幂元

所以如果有零元则一定构不成群,因为零元没有逆元

如果还具有可交换的性质,则为可交换群或者阿贝尔群

群的阶数为群中元素的个数,元素的阶数为元素a^k=e的k的最小值(元素和逆元具有相同的阶数

{e,a1,a2}则该群为三阶,因为e=a^3

置换群定义:n个元素组成的集合A,(置换有n!个),A上的置换(不一定是所有置换)所构成的群称为n次置换群所有置换所构成的群为n次对称群

循环群:循环群是由g生成的,g为生成元。循环群是可交换群 类比于循环独异点(不同点是幺元是生成元的0次幂) 生成元都不一定为1个

if G为有限循环群 并且 |G| = n 则 g^n=e

子群

图论

在有向图中,任意两个结点,至少有一个结点能直接到达另一个结点,则为单向联通

若任意两结点都互相可到达,则图为强连通

若任意两结点不能相互到达,但把方向去掉,可联通,则为弱连通图

欧拉图的判定:无向连通图,顶点次数都为偶数

判断是否存在欧拉路径:该无向连通图存在0个或者两个奇次次数的顶点

哈密顿图

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值