目录
范式的定义
范式求解
范式存在定理
结论
主范式
1.极小项和极大项
2.主析取范式和主合取范式
主范式求解方法一:公式转换法
主范式求解方法二:真值表法
推理
1.推理的形式
2.蕴含公式
演绎
1.推理规则
2.自然演绎法
2.1直接证明法
2.2反证法
范式的定义
1.命题变元或命题变元的否定称为文字。P, ¬P, Q, ¬Q, · · ·
2.有限个(1个也可以)文字的析取称为简单析取式(或子句)。P ∨ Q ∨ ¬R, · · · P,¬P
3.有限个文字的合取称为简单合取式(或短语)。¬P ∧ Q ∧ R, · · · P,¬P
有限个简单合取式(短语)的析取式称为析取范式 如 (P ∧ Q) ∨ (¬P ∧ Q) ,又如 P ∧ ¬Q,P,¬P
有限个简单析取式(子句)的合取式称为合取范式 如 (P ∨ Q) ∧ (¬P ∨ Q),又如 P ∨ ¬Q,P, ¬P
特别注意
一个简单合取式/简单析取式加括号和不加括号有区别:
P ∨ Q ∨ ¬R 是子句,合取范式,析取范式 ---可以看作单个的文字->构成合取范式,也可以看作一个简单合取式->构成析取范式
(P ∨ Q ∨ ¬R) 是子句,合取范式 ---只能看作一个简单合取式
范式求解
范式存在定理
对于任意命题公式,都存在与其等价的析取范式和合取范式。
例:求公式 (P → ¬Q) ∨ (P ↔ R) 的析取范式和合取范式。
结论
范式是真值表的替代方法:命题公式的析取范式可以指出公式何时为真,而合取范式可以指出公式何时为假,从而能够替代真值表。 命题公式的范式表达并不唯一。
将真值表中为1的所有解释写成析取形式就得到析取范式;
将真值表中为0 的所有解释写成合取形式就得到合取范式。
主范式
1.极小项和极大项
在含有
n
个命题变元
P
1
,
P
2
,
P
3
,
· · ·
,
P
n
的
短语或子句
中,若
每个命题变元与其否定不同时存在, 但二者之一恰好出现一次且仅一次,并且出现的次序与
P
1
,
P
2
,
P
3
,
· · ·
,
P
n
一致
,则称此短语或子句为关于 P
1
,
P
2
,
P
3
,
· · ·
,
P
n
的一个
极小项或极大项
。
对于命题变元P
Q ,极小项为
¬
P
∧ ¬
Q ,
¬
P
∧
Q ,
P
∧ ¬
Q ,
P
∧
Q
极大项为
¬
P
∨ ¬
Q
,¬
P
∨
Q
,P
∨ ¬
Q
,P
∨
Q
每个极小项只有一组成真赋值,二进制编码为它的成真赋值
每个极大项只有一组成假赋值,二进制编码为它的成假赋值
eg:
2.主析取范式和主合取范式
在给定的析取范式中,若
每一个短语都是极小项
,且按照编码
从小到大
的顺序排列,
则称该范式为
主析取范式。
在给定的合取范式中,若
每一个子句都是极大项
,且按照编码
从小到大
的顺序排列,
则称该范式为
主合取范式。
任何一个公式都有与之等价的主析取范式和主合取范式。
主范式求解方法一:公式转换法
若析取(合取)范式的某一个短语(子句)
B
i
中缺少命题变元
P
,则可用如下方式将
P
补进去:
B
i
=
B
i
∧
1 =
B
i
∧
(
¬
P
∨
P
) = (
B
i
∧ ¬
P
)
∨
(
B
i
∧
P
)
;
B
i
=
B
i
∨
0 =
B
i
∨
(
¬
P
∧
P
) = (
B
i
∨ ¬
P
)
∧
(
B
i
∨
P
)
。
eg:
主范式求解方法二:真值表法
主析取范式包括:所有使命题为真的解释对应的极小项(提示:设命题有一组解释,使命题对应的主析取范式为真,则范式中必有一个极小项为真,而每组解释只对应一个为真的极小项)
主合取范式包括:所有使命题为假的解释对应的极大项
eg:
推理
1.推理的形式
设
G
1
,
G
2
,
· · ·
,
G
n
,
H
是公式
称
H
是
G
1
,
G
2
,
· · ·
,
G
n
的逻辑结果当且仅当对任意解释
I
, 如果I
使得
G
1
∧
G
2
∧ · · · ∧
G
n
为真,则
I
也会使
H
为真。
记为
G
1
,
G
2
,
· · ·
,
G
n
⇒
H
。(
⇒成为蕴含关系,与->不一样。->是运算符,⇒不是。
)
此时,称
G
1
,
G
2
,
· · ·
,
G
n是前提,H是结论。
公式 H 是前提集合 Γ = {G1, G2, · · · , Gn} 的逻辑结果当且仅当 (G1 ∧ G2 ∧ · · · ∧ Gn) → H
为永真公式。
判断推理
G1, G2, · · · ,Gn ⇒ H是否有效的方法(判断(G1 ∧ G2 ∧ · · · ∧ Gn) → H是否永真):
1.真值表技术。
2.公式转换法。
3.主析取范式法。
eg:
判断推理
P
→
Q
,
P
⇒
Q 是否有效 等价于 判断(
P → Q∧P)→ Q
是否永真
2.蕴含公式
演绎
1.推理规则
1.规则
P
(
称为
前提引用规则
)
:在推导的过程中,可随时引入前提集合中的任意一个前提;
2.规则
T
(
称为
逻辑结果引用规则
)
:在推导的过程中,可以随时引入公式
S
,该公式
S
是由其
前的一个或多个公式推导出来的逻辑结果。
3.规则
CP
(
称为
附加前提规则
)
:如果能从给定的前提集合
Γ
与公式
P
推导出
S
,则能从此
前提集合
Γ
推导出
P
→
S
。
cp规则使用场合
:
当结论公式是
蕴涵式或析取式
时使用。
2.自然演绎法
2.1直接证明法
2.2反证法
要证明:
G
1
,
G
2
,
· · ·
,
G
n
⇒
H
若G1 ∧ G2 ∧ · · · ∧ Gn ∧ ¬H ⇒ R ∧ ¬R
即证明
G1
∧
G
2
∧ · · · ∧
G
n
∧ ¬
H恒为假
从而得证H
反证法是cp规则的一种变形,可以用于前提少结论多的情况