离散数学学习笔记 第三章 命题逻辑-范式

本文详细阐述了命题逻辑中的范式定义,包括析取范式和合取范式的概念,以及如何通过公式转换和真值表法求解主范式。同时,介绍了推理的形式,如蕴含公式和演绎规则,包括直接证明法和反证法,强调了范式在逻辑推理中的重要性。
摘要由CSDN通过智能技术生成

目录

范式的定义

范式求解

范式存在定理

结论

主范式

1.极小项和极大项 

2.主析取范式和主合取范式

主范式求解方法一:公式转换法

主范式求解方法二:真值表法

推理

1.推理的形式

2.蕴含公式

演绎

1.推理规则

2.自然演绎法

2.1直接证明法

2.2反证法


范式的定义

1.命题变元命题变元的否定称为文字。P, ¬P, Q, ¬Q, · · ·

2.有限个(1个也可以)文字的析取称为简单析取式(或子句)。P ∨ Q ∨ ¬R, · · · P,¬P

3.有限个文字的合取称为简单合取式(或短语)。¬P ∧ Q ∧ R, · · · P,¬P

有限个简单合取式(短语)的析取式称为析取范式  如 (P ∧ Q) ∨ (¬P ∧ Q) ,又如 P ∧ ¬Q,P,¬P

有限个简单析取式(子句)的合取式称为合取范式  如 (P ∨ Q) ∧ (¬P ∨ Q),又如 P ∨ ¬Q,P, ¬P

特别注意

一个简单合取式/简单析取式加括号和不加括号有区别:

P ∨ Q ∨ ¬R 是子句,合取范式,析取范式   ---可以看作单个的文字->构成合取范式,也可以看作一个简单合取式->构成析取范式

(P ∨ Q ∨ ¬R) 是子句,合取范式                  ---只能看作一个简单合取式

范式求解

范式存在定理

对于任意命题公式,都存在与其等价的析取范式和合取范式。

例:求公式 (P → ¬Q) ∨ (P ↔ R) 的析取范式和合取范式。

结论

范式是真值表的替代方法:命题公式的析取范式可以指出公式何时为,而合取范式可以指出公式何时为,从而能够替代真值表。 命题公式的范式表达并不唯一。

将真值表中为1的所有解释写成析取形式就得到析取范式;

将真值表中为0 的所有解释写成合取形式就得到合取范式。

主范式

1.极小项和极大项 

在含有 n 个命题变元 P 1 , P 2 , P 3 , · · · , P n 短语或子句 中,若 每个命题变元与其否定不同时存在, 但二者之一恰好出现一次且仅一次,并且出现的次序与 P 1 , P 2 , P 3 , · · · , P n 一致 ,则称此短语或子句为关于 P 1 , P 2 , P 3 , · · · , P n 的一个 极小项或极大项
对于命题变元P Q  ,极小项为  ¬ P ∧ ¬ Q   ,   ¬ P Q ,     P ∧ ¬ Q ,    P Q
极大项为 ¬ P ∨ ¬ Q ,¬ P Q ,P ∨ ¬ Q ,P Q
每个极小项只有一组成真赋值,二进制编码为它的成真赋值
每个极大项只有一组成假赋值,二进制编码为它的成假赋值
eg:

2.主析取范式和主合取范式

在给定的析取范式中,若 每一个短语都是极小项 ,且按照编码 从小到大 的顺序排列,
则称该范式为 主析取范式。
在给定的合取范式中,若 每一个子句都是极大项 ,且按照编码 从小到大 的顺序排列,
则称该范式为 主合取范式。
任何一个公式都有与之等价的主析取范式和主合取范式。

主范式求解方法一:公式转换法

若析取(合取)范式的某一个短语(子句) B i 中缺少命题变元 P ,则可用如下方式将 P 补进去:
B i = B i 1 = B i ( ¬ P P ) = ( B i ∧ ¬ P ) ( B i P )
B i = B i 0 = B i ( ¬ P P ) = ( B i ∨ ¬ P ) ( B i P )
eg:

主范式求解方法二:真值表法

主析取范式包括:所有使命题为真的解释对应的极小项(提示:设命题有一组解释,使命题对应的主析取范式为真,则范式中必有一个极小项为真,而每组解释只对应一个为真的极小项)

主合取范式包括:所有使命题为假的解释对应的极大项

eg:

推理

1.推理的形式

G 1 , G 2 , · · · , G n , H 是公式
H G 1 , G 2 , · · · , G n 的逻辑结果当且仅当对任意解释 I , 如果I 使得 G 1 G 2 ∧ · · · ∧ G n 为真,则 I 也会使 H 为真。
记为 G 1 , G 2 , · · · , G n H 。( ⇒成为蕴含关系,与->不一样。->是运算符,⇒不是。
此时,称 G 1 , G 2 , · · · , G n是前提,H是结论。
公式 H 是前提集合 Γ = {G1, G2, · · · , Gn} 的逻辑结果当且仅当 (G1 ∧ G2 ∧ · · · ∧ Gn) → H
为永真公式。
判断推理 G1, G2, · · · ,Gn ⇒ H是否有效的方法(判断(G1 ∧ G2 ∧ · · · ∧ Gn) → H是否永真):
1.真值表技术。
2.公式转换法。
3.主析取范式法。
eg: 判断推理 P Q , P Q 是否有效 等价于 判断( P → Q∧P)→ Q 是否永真

2.蕴含公式

演绎

1.推理规则

1.规则 P ( 称为 前提引用规则 ) :在推导的过程中,可随时引入前提集合中的任意一个前提;
2.规则 T ( 称为 逻辑结果引用规则 ) :在推导的过程中,可以随时引入公式 S ,该公式 S 是由其
前的一个或多个公式推导出来的逻辑结果。
3.规则 CP ( 称为 附加前提规则 ) :如果能从给定的前提集合 Γ 与公式 P 推导出 S ,则能从此
前提集合 Γ 推导出 P S
cp规则使用场合 : 当结论公式是 蕴涵式或析取式 时使用。

2.自然演绎法

2.1直接证明法

 

2.2反证法

要证明: G 1 , G 2 , · · · , G n H
G1 G2 ∧ · · · ∧ Gn ∧ ¬H R ∧ ¬R  
即证明 G1 G 2 ∧ · · · ∧ G n ∧ ¬ H恒为假
从而得证H

 反证法是cp规则的一种变形,可以用于前提少结论多的情况

 

 

离散数学命题逻辑是一种研究命题之间关系的数学分支。命题逻辑主要涉及命题的定义、联结词(如非、与、或、蕴含、等价、异或)的运算规则及其真值表、命题的语义等。等价是命题逻辑中重要的概念之一。 当两个命题具有相同的真值时,它们被称为等价命题。例如,命题P与Q分别是“今天是周日”和“明天是周一”,那么这两个命题的真值相同时,即今天是周日的时候明天是周一,它们可以称为等价命题。 在离散数学中,我们可以使用真值表来判断两个命题是否等价。真值表是将所有可能的命题取值列出,并对每个命题的取值进行判断的表格。通过比较真值表中相应的列的取值,可以判断两个命题是否等价。 例如,在真值表的第三列中,如果两个命题的取值均为真(T),那么这两个命题等价。如果两个命题的取值均为假(F),也可以认为这两个命题等价。但如果它们的取值一个为真一个为假,那么它们不等价。 以命题P:“今天天气晴朗”和命题Q:“太阳照耀着”为例,它们的等价关系可以通过真值表进行判断。在真值表中,当天气晴朗时太阳照耀着,因此P和Q的真值列完全相同,即它们是等价的。 综上所述,离散数学中的命题逻辑通过真值表等方法来判断命题的等价关系。等价命题在数学和计算机科学中有着广泛的应用,可以帮助我们简化、判断、推导命题的逻辑关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值