<信息论>[Matlab]-[实验二]离散信道的容量

实验二 离散信道的容量

一、信道容量的物理意义、概念

信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。对不同的输入概率分布,互信息一定存在最大值。我们将这个最大值定义为信道的容量。一旦转移概率矩阵确定以后,信道容量也就完全确定了。尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不一样。其中必有一个试验信源使互信息达到最大。这个最大值就是信道容量。

二、离散信道容量的计算步骤

1、对称离散信道求信道容量

对于对称离散信道,若其转移概率用如下的信道转移概率矩阵来表示

P = [ p ( b 1 / a 1 ) ⋯ p ( b s / a 1 ) ⋮ ⋮ p ( b 1 / a r ) ⋯ p ( b s / a r ) ] P=\Bigg[ \begin{matrix}p(b_1/a_1)&\cdots &p(b_s/a_1)\\\vdots& &\vdots\\p(b_1/a_r)&\cdots&p(b_s/a_r)\end{matrix}\Bigg] P=[p(b1/a1)p(b1/ar)p(bs/a1)p(bs/ar)]

其中,信道矩阵P中每一行都是第一行的重新排列,每一列也都是第一列的重新排列的规律

则其信道容量为

C = max ⁡ p ( x ) I ( X ; Y ) = max ⁡ p ( x ) [ H ( Y ) − H ( p 1 , p 2 , ⋯   , p s ) ] = l o g s − H ( p 1 , p 2 , ⋯   , p s ) ( 比 特 / 符 号 ) \begin{aligned}C &= \max_{p(x)} I(X;Y) \\ &= \max_{p(x)}[H(Y) -H(p_1,p_2,\cdots,p_s)]\\&=logs - H(p_1,p_2,\cdots,p_s) (比特/符号)\end{aligned} C=p(x)maxI(X;Y)=p(x)max[H(Y)H(p1,p2,,ps)]=logsH(p1,p2,,ps)/

流程框图

在这里插入图片描述

2、已知信噪比信道带宽求信道容量

根据香农公式

C = W l o g ( 1 + P S N 0 W ) C = Wlog(1+\frac{P_S}{N_0W}) C=Wlog(1+N0WPS)

P s P_s Ps是信号的平均功率; N 0 W N_0W N0W为高斯白噪声在带宽W内的平均功率。

流程框图
在这里插入图片描述

三、Matlab实现

  1. 对称离散信道求信道容量

    clear
    p = input("请输入信道转移概率矩阵");
    a = 0;
    s = size(p,2);
    for i = 1:s
        a = a - p(1,i) * log2(p(1,i));
    end
    c = log2(s) - a;
    fprintf('信道容量: %f (bit/symbol)\n',c);    %输出结果
    

    运行结果
    在这里插入图片描述

  2. 已知信噪比信道带宽求信道容量

    clear
    W = input("请输入信道带宽:");    %信道带宽
    Ps_n = input("请输入信噪比:");  %信噪比
    C = W * log2(1+Ps_n);
    fprintf('信道容量: %f genbit/symbol)\n',C);    %输出结果
    

    运行结果

    在这里插入图片描述

四、信道容量与信源先验概率及信道转移概率的关系

信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。对不同的输入概率分布,互信息一定存在最大值。我们将这个最大值定义为信道的容量。一旦转移概率矩阵确定以后,信道容量也完全确定了。尽管信道容量的定义涉及到输入概率的分布,但信道容量的数值与输入概率分布无关。我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。其中必有一个试验信源使互信息达到最大。这个最大值就是信道容量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值