训练记录6:数据结构

优先队列

poj3614

题意:一群奶牛晒太阳,每只奶牛有一个太阳强度的限制minSPA和maxSPA,但太阳太猛烈,奶牛需要涂防晒霜才能晒太阳。防晒霜可以把太阳强度固定在一个值,如果比minSPA小还是会烧伤,如果比maxSPA大奶牛就没啥感觉。每只奶牛最多涂一瓶防晒霜,给出防晒霜的SPA值和数量,问有多少奶牛可以享受阳光

思路:主要是贪心,可以分别枚举奶牛和防晒霜。如果枚举奶牛的话不方便维护防晒霜的数量,因此选择枚举防晒霜,假设防晒霜以SPA从小到大排序,那么在符合条件(minspa≤SPA)中的奶牛中应该选哪只奶牛呢,答案是maxSPA最小的那一只,因为防晒霜SPA值越来越大,maxSPA大的奶牛可以留给更大的防晒霜涂。

维护maxSPA就可以用优先队列(小根堆)就可以了,如果堆顶满足条件(maxSPA≥SPA),就可以对这种防晒霜num--了,如果不满足直接丢弃即可,因为如果当前防晒霜都不满足那后面更大的防晒霜就更不满足了

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<iomanip>
using namespace std;
typedef long long ll;
const long long ll_inf=0x3f3f3f3f3f3f3f3f;
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int Max=3000+5;
const int Mod=1e9;
#define _for(i,n) for(int i=0;i<n;++i)
#define _rep(i,n) for(int i=1;i<=n;++i)
//cout<<setw(8)<<fixed<<setprecision(3);
//ios::sync_with_stdio(false);
//priority_queue<int,vector<int>,greater<int> >
struct node{
	int ma,mi;
	bool operator < (const node &r)const{
		return mi<r.mi;
	}
}cow[Max];
struct node2{
	int spa,num;
	bool operator < (const node2 &r)const{
		return spa<r.spa;
	}
}sp[Max];
int c,l;
int main(){
	ios::sync_with_stdio(false);
	cin>>c>>l;
	_for(i,c) cin>>cow[i].mi>>cow[i].ma;
	_for(i,l) cin>>sp[i].spa>>sp[i].num;
	sort(sp,sp+l);
	sort(cow,cow+c);
	int ans=0,j=0;
	priority_queue<int,vector<int>,greater<int> > q;
	_for(i,l){//对每种防晒霜枚举 
		while(j<c&&cow[j].mi<=sp[i].spa){
			q.push(cow[j].ma);
			j++; 	
		}
		while(!q.empty()&&sp[i].num){
			int x=q.top();
            q.pop();
            if(x<sp[i].spa) continue;
            ans++;
            sp[i].num--;
		}
	}
	cout<<ans<<'\n';
	return 0;
}

while(j<c&&cow[j].mi<=sp[i].spa) 这个入队列的条件注意不能加上cow[j].ma>=sp[i].spa,虽然看似很合理:如果最大值小于spa就不用入队,但是会导致循环直接结束,遗漏掉排在这只奶牛后面的奶牛


poj2010

题意:一共有C头奶牛,要选N头奶牛,每头奶牛有一个价值和花费,要求选N头奶牛的总花费小于F的同时这N头奶牛的价值的中位数最大,输出这个中位数

思路:假设选第i头奶牛,则会在1到i之间,i到c之间分别选N/2头奶牛,而选那些奶牛对中位数没有影响。因此选择那些花费最小的奶牛即可,花费最小可以考虑采用优先队列,但是如果枚举每头奶牛的时候才进行计算会T,因此考虑先预处理好1到i,i到c头奶牛中选N/2头奶牛的最小值,然后再用O(n)的时间查询即可

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<iomanip>
using namespace std;
typedef long long ll;
const long long ll_inf=0x3f3f3f3f3f3f3f3f;
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int Max=100000+5;
const int Mod=1e9;
//cout<<setw(8)<<fixed<<setprecision(3);
//ios::sync_with_stdio(false);
//priority_queue<int,vector<int>,greater<int> >
#define _for(i,n) for(int i=0;i<n;++i)
#define _rep(i,n) for(int i=1;i<=n;++i)
struct node{
	int val,cos;
	bool operator < (const node &r)const{
		return val>r.val;
	}
}cow[Max];
int dp1[Max];
int dp2[Max];
int N,C,F; 
int main(){
	ios::sync_with_stdio(false);
	cin>>N>>C>>F;
	_for(i,C){
		cin>>cow[i].val>>cow[i].cos; 
	}
	if(N==1){
		if(cow[0].cos<=F)
		cout<<cow[0].val<<'\n';
		else
		cout<<"-1";
		return 0;
	}
	sort(cow,cow+C);
	int low=N/2;
	priority_queue<ll> q;
	for(int i=0;i<low;++i){
		q.push(cow[i].cos);
		dp1[low]+=cow[i].cos;
	}
	for(int i=low+1;i<C;i++){
		if(cow[i-1].cos>=q.top())
		dp1[i]=dp1[i-1];
		else
		dp1[i]=dp1[i-1]+cow[i-1].cos-q.top();
		q.pop();
		q.push(cow[i-1].cos);
	}
	while(!q.empty())
	q.pop();
	for(int i=C-1;i>C-low-1;i--){
		q.push(cow[i].cos);
		dp2[C-low-1]+=cow[i].cos;		
	}
	for(int i=C-low-2;i>=0;i--){
		if(cow[i+1].cos>=q.top())
		dp2[i]=dp2[i+1];
		else{
			dp2[i]=dp2[i+1]+cow[i+1].cos-q.top();
			q.pop();
			q.push(cow[i+1].cos);		
		}
	}
	int i,flag=0;
	for(i=N/2;i<C-N/2;i++){
		int ans=cow[i].cos;
		ans+=dp1[i];
		ans+=dp2[i];
		if(ans<=F){
			flag=1;
			break;
		}
	}
	if(flag)
	cout<<cow[i].val<<'\n';
	else
	cout<<"-1";
	return 0;
}

如果预处理的部分太暴力也会T(比如我),这里学习了其他人的方法,采用大根堆,对于前N/2的奶牛,全部加起来存到dp[N/2]中(我喜欢从0开始),从N/2+1头牛开始,如果这头牛的花费比此时的优先队列队首大(队首保存的是前N/2中最大的),则dp[]直接等于前一个dp[](你比队首大肯定就不选你),反之dp[i] =dp[i-1] +cow[i-1].cos-q.top() 意思就是用小的代替堆顶并更新堆顶。另外dp[i]是不包含第i头牛的,后面查询还要记得加上i牛的花费。


poj2236

题意:给出一些坐标和一个距离d,给出一些字符串,要么是修复一个坐标,要么是查询两个已修复的坐标是否能连起来,连起来的意思是要么两个坐标距离小于d,要么可以通过一个或多个已修复的中间坐标连起来.

思路:并查集裸题。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<iomanip>
using namespace std;
typedef long long ll;
const long long ll_inf=0x3f3f3f3f3f3f3f3f;
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int Max=1000+5;
const int Mod=1e9;
//cout<<setw(8)<<fixed<<setprecision(3);
//ios::sync_with_stdio(false);
//priority_queue<int,vector<int>,greater<int> >
#define _for(i,n) for(int i=0;i<n;++i)
#define _rep(i,n) for(int i=1;i<=n;++i)
int par[Max];
int Rank[Max];
void init(int n){
	for(int i=0;i<n;i++){
		par[i]=i;
		Rank[i]=0;
	}
}
int find(int x){
	if(par[x]==x)
	return x;
	else
	return par[x]=find(par[x]);//已经进行了压缩 
}
void unite(int x,int y){
	x=find(x);
	y=find(y);
	if(x==y)
	return ;
	if(Rank[x]<Rank[y]){
		par[x]=y;
	}else{
		par[y]=x;
		if(Rank[x]==Rank[y])
		Rank[x]++;	
	}
}
bool same(int x,int y){
	return find(x)==find(y);
}
struct node{
	int x,y;
}p[Max];
int n,d;
bool Can(int a,int b){
	int dis=(p[a].x-p[b].x)*(p[a].x-p[b].x)+(p[a].y-p[b].y)*(p[a].y-p[b].y);
	return dis<=d*d;
}
int main(){
	cin>>n>>d;
	int flag[Max]={0};
	int f=0;
	init(n);
	_for(i,n){
		cin>>p[i].x>>p[i].y;
	}
	char a;	
	int b,c;
	while(cin>>a){
		if(a=='O'){//修复 
			cin>>b;
			b--;	
			_for(i,f){
				if(Can(flag[i],b)){
					unite(flag[i],b);
					
				}			
			}
			flag[f++]=b;
		}else{
			cin>>b>>c;
			b--;
			c--;
			if(same(b,c))
			cout<<"SUCCESS\n";
			else
			cout<<"FAIL\n";
		}
	}
}

这题1w毫秒,不关同步流8000,关了3000,改scanf 1000


poj1703

题意:有两个帮派,给出一些语句,要么问两个人是不是一个帮派的,要么给出两个人不是同一个帮派的。

思路:简直和食物链(poj1182)是一个磨子刻出来的题,其实是它的简化版。那么思路就很清晰了,开2*n的大小,前n个代表帮派A,后n个代表帮派B。询问的时候就查找a,b或者a+n,b+n,给信息的时候就合并a,b+n和b,a+n。同时合并是为了简化操作,即合并所有可能,免得还去找那个是已经属于哪个帮派的。

#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<stack>
#include<iomanip>
using namespace std;
typedef long long ll;
const long long ll_inf=0x3f3f3f3f3f3f3f3f;
const int inf=0x3f3f3f3f;
const double pi=acos(-1.0);
const int Max=1e5+5;
const int Mod=1e9;
//cout<<setw(8)<<fixed<<setprecision(3);
//ios::sync_with_stdio(false);
//priority_queue<int,vector<int>,greater<int> >
#define _for(i,n) for(int i=0;i<n;++i)
#define _rep(i,n) for(int i=1;i<=n;++i)
int par[Max*2];
int Rank[Max*2];
void init(int n){
	for(int i=0;i<n;i++){
		par[i]=i;
		Rank[i]=0;
	}
}
int find(int x){
	if(par[x]==x)
	return x;
	else
	return par[x]=find(par[x]);//已经进行了压缩 
}
void unite(int x,int y){
	x=find(x);
	y=find(y);
	if(x==y)
	return ;
	if(Rank[x]<Rank[y]){
		par[x]=y;
	}else{
		par[y]=x;
		if(Rank[x]==Rank[y])
		Rank[x]++;	
	}
}
bool same(int x,int y){
	return find(x)==find(y);
}
int main(){
	int t;
	scanf("%d",&t);
	//cin>>t;
	while(t--){
		int n,m;
		scanf("%d %d",&n,&m);
		//cin>>n>>m;
		init(2*n);
		_for(i,m){
			char a;
			int x,y;
			getchar();
			scanf("%c %d %d", &a, &x, &y);
			//cin>>a;
			if(a=='A'){
				if(same(x,y)||same(x+n,y+n)){
					cout<<"In the same gang.\n";
				}else if(same(x+n,y)||same(x,y+n)){
					cout<<"In different gangs.\n";
				}else{
					cout<<"Not sure yet.\n";
				}
			}else{
				unite(x,y+n);
				unite(x+n,y);
			}
		}
	}
}

另外注意并查集用到的两个数组要开2倍,不然等着吃re去吧


阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 期末复习数据结构讲义pdf是指一份包含数据结构相关知识的教材或讲义的电子文档。 首先,这份讲义是为期末考试而准备的,因此它会涵盖这门课程所讲授的数据结构的主要概念和内容。它通常会包括各种数据结构的定义、特性、操作等内容,例如数组、链表、栈、队列、树、图等等。此外,这份讲义还可能包括一些与数据结构相关的算法和问题,如排序算法、查找算法、遍历算法等。 其次,这份讲义的目的是帮助学生复习数据结构的知识,提供一个系统化的学习资料。因此,它通常会按照逻辑顺序组织,从基础的概念开始,逐渐深入,直至较为复杂的内容。学生可以通过研读这份讲义,回顾和巩固课堂上所学的内容,理解数据结构的原理和应用。 此外,这份讲义可能会包含一些实例和习题,以帮助学生加深对数据结构知识的理解和应用能力。这些实例和习题可以用来训练学生解决实际问题的能力,并提供一些思路和方法。 最后,这份讲义以pdf格式呈现,具有电子化的特点。学生可以方便地通过电脑、平板电脑或手机等设备随时随地查阅,并进行标注、批注等操作,方便复习和学习。 总之,期末复习数据结构讲义pdf是一份针对数据结构课程的复习资料,通过系统、全面地总结了数据结构的相关知识,帮助学生进行复习,并提供了一些实例和习题,方便学生加深对数据结构的理解和应用。 ### 回答2: 期末复习数据结构讲义pdf是一份非常重要的学习资料。在期末考试前进行复习时,它可以作为一个很好的参考工具。 首先,数据结构是计算机科学中的一门核心课程,涉及到很多基础的知识和概念。这份讲义中记录数据结构的各种基本概念、定义和性质,以及常见的数据结构类型,如数组、链表、栈、队列、树等。对于复习阶段来说,这些内容对于回顾和加深理解非常有帮助。 此外,这份讲义还包括了数据结构的一些重要算法和操作,例如查找、排序和插入等。这些算法是数据结构中的关键,理解它们的原理和实现方式对于提高代码效率和解决实际问题至关重要。 最后,这份讲义可能还包括一些实例或编程题目,供学生进行练习和巩固应用知识。这是非常有用的,因为通过实际操作和编程实践,学生可以更深入地理解数据结构的概念和应用,并提升自己的编程能力。 总之,期末复习数据结构讲义pdf是一份极其重要的学习资料,它汇集了数据结构的基本概念、算法和实例,为学生提供了一个全面深入的复习和巩固知识的工具。我们应该认真阅读、理解和应用这份讲义,希望能够在期末考试中取得优异的成绩。 ### 回答3: 数据结构是计算机科学中的重要基础课程,掌握数据结构对于学习和应用计算机算法具有至关重要的作用。期末复习数据结构讲义PDF是一种非常有效的学习资料。以下是对该讲义的回答: 期末复习数据结构讲义PDF对学习数据结构有很大帮助。首先,该讲义系统地总结了各种常见的数据结构及其应用,如链表、栈、队列、二叉树、图等。通过讲义中的讲解和示例,可以清晰地了解每种数据结构的定义、特点和操作。 其次,该讲义提供了大量的例题和练习题,能够帮助学生巩固对数据结构的理论知识和运用能力。通过讲义中的习题,学生可以对所学知识进行实际的应用,深化对数据结构的理解,并培养解决实际问题的能力。 此外,该讲义还包含了一些常见算法的讲解,如排序、查找、图的遍历等。这些算法与数据结构密切相关,掌握这些算法能够提升学生的算法设计和分析能力。 最后,该讲义的PDF格式方便学生进行随时随地的学习。学生可以通过电脑、平板或手机等设备随时打开讲义进行学习,非常方便。 综上所述,期末复习数据结构讲义PDF具有很高的教学价值。它能够帮助学生系统地学习和巩固数据结构的知识,提高算法设计和分析能力。同时,讲义的PDF格式也很方便学生进行学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

始归零

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值