PTA 7-9 旅游规划 (25 分)

这篇博客介绍了三种解决图中求两点之间最短路径问题的算法:Floyd算法、Dijkstra算法和SPFA算法。通过C++代码展示了每种算法的实现细节,适用于解决带有距离和费用的图的最短路径问题。Floyd算法利用动态规划求解所有点对之间的最短路径,Dijkstra算法采用优先队列求单源最短路径,而SPFA是Bellman-Ford算法的一种优化,用于处理负权边的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求两点之间最短路径问题
Floyd算法

#include<bits/stdc++.h>
using namespace std;
const int maxn=5e2+5;
const int inf=0x3f3f3f3f;
typedef long long ll;
int G[maxn][maxn];
int d[maxn][maxn];
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n,m,s,D;
    cin>>n>>m>>s>>D;
    memset(G,inf,sizeof(G));
    memset(d,inf,sizeof(d));
    for(int i=0;i<n;i++)
    {
        d[i][i]=0;
        G[i][i]=0;
    }
    for(int i=0;i<m;i++)
    {
        int x,y,s,w;
        cin>>x>>y>>s>>w;
        G[x][y]=min(G[x][y],s);
        G[y][x]=min(G[y][x],s);
        d[x][y]=min(d[x][y],w);
        d[y][x]=min(d[y][x],w);
    }
    for(int k=0;k<n;k++)
    {
        for(int i=0;i<n;i++)
        {
            {
                for(int j=0;j<n;j++)
                {
                    if(G[i][j]>G[i][k]+G[k][j]||(G[i][j]==G[i][k]+G[k][j]&&d[i][j]>d[i][k]+d[k][j]))
                    {
                        G[i][j]=G[i][k]+G[k][j];
                        d[i][j]=d[i][k]+d[k][j];
                    }
                }
            }
        }
    }
    cout<<G[s][D]<<" "<<d[s][D];
}

Dijkstra算法

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+5;
const int inf=0x3f3f3f3f;
typedef long long ll;
int d[maxn],p[maxn];
bool vis[maxn];
struct Edge
{
    int from,to,dist,money;
};

vector<Edge>edges;
vector<int>G[maxn];
void init(int n)
{
    for(int i=0;i<n;i++)
        G[i].clear();
    edges.clear();
}

void add(int from,int to,int dist,int money)
{
    edges.push_back((Edge){from,to,dist,money});
        int m=edges.size();
    G[from].push_back(m-1);
    edges.push_back({to,from,dist,money});
        m=edges.size();
    G[to].push_back(m-1);
}

struct HeapNode
{
    int d,p,u;
    bool operator <(const HeapNode &rhs)const{
        if(d==rhs.d)
            return p>rhs.p;
        return d>rhs.d;
    }
};

int main()
{
    priority_queue<HeapNode>Q;
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n,m,s,D;
    cin>>n>>m>>s>>D;
    init(n);
    memset(vis,false,sizeof(vis));
    memset(d,inf,sizeof(d));
    memset(p,inf,sizeof(p));
    for(int i=0;i<m;i++)
    {
        int a,b,c,e;
        cin>>a>>b>>c>>e;
        add(a,b,c,e);
    }
    d[s]=0;
    p[s]=0;
    Q.push({d[s],p[s],s});
    while(!Q.empty())
    {
        HeapNode temp=Q.top();
        Q.pop();
        int u=temp.u;
        if(u==D)
            break;
        if(vis[u]==true)
            continue;
        vis[u]=true;
        for(int i=0;i<G[u].size();i++)
        {
            Edge e=edges[G[u][i]];
            if(d[e.to]>d[u]+e.dist||(d[e.to]==d[u]+e.dist&&p[e.to]>p[u]+e.money))
            {
                d[e.to]=d[u]+e.dist;
                p[e.to]=p[u]+e.money;
                Q.push((HeapNode){d[e.to],p[e.to],e.to});
            }
        }
    }
    cout<<d[D]<<" "<<p[D];
}

spfa算法

#include<bits/stdc++.h>
using namespace std;
const int maxn=5e2+5;
const int inf=0x3f3f3f3f;
typedef long long ll;
vector<int>G[maxn];
int dist[maxn][maxn];
int ans1[maxn],ans2[maxn];
int M[maxn][maxn];
bool vis[maxn];

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n,m,s,D;
    queue<int>q;
    memset(dist,inf,sizeof(dist));
    memset(M,inf,sizeof(M));
    memset(vis,false,sizeof(vis));
    memset(ans1,inf,sizeof(ans1));
    memset(ans2,inf,sizeof(ans2));
    cin>>n>>m>>s>>D;
    for(int i=0;i<m;i++)
    {
        int a,b,c,z;
        cin>>a>>b>>c>>z;
        G[a].push_back(b);
        G[b].push_back(a);
        dist[a][b]=dist[b][a]=c;
        M[a][b]=M[b][a]=z;
    }

    for(int i=0;i<n;i++)
    {
        M[i][i]=0;
        dist[i][i]=0;
    }

    q.push(s);
    vis[s]=true;//记录一下起点放进去
    ans1[s]=0;
    ans2[s]=0;
    while(!q.empty())
    {
        int temp=q.front();
        q.pop();
        vis[temp]=false;//记录一下队首已被踢出去
        for(int i=0;i<G[temp].size();i++)
        {
            int v=G[temp][i];
            if(ans1[v]>ans1[temp]+dist[temp][v]||(ans1[v]==ans1[temp]+dist[temp][v]&&ans2[v]>ans2[temp]+M[temp][v]))
            {
                ans1[v]=ans1[temp]+dist[temp][v];
                ans2[v]=ans2[temp]+M[temp][v];
                if(!vis[v])
                {
                    vis[v]=true;
                    q.push(v);
                }
            }
        }
    }
     cout<<ans1[D]<<" "<<ans2[D];
}
### Dijkstra算法在PTA平台上的实现 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,其核心思想基于贪心策略和动态规划的思想[^1]。具体来说,它通过逐步扩展已知的最短路径集合来找到从起点到其他所有节点的最短距离。 #### 题目背景 在PTA平台上有一类题目涉及到了Dijkstra算法的应用,比如“旅游规划”这一题[^2]。这类题目通常会给出一张图(可以用邻接矩阵表示),并要求计算两个指定节点之间的最短路径及其费用最小化的情况[^4]。 以下是针对此类问题的一种通用解决方案: --- #### 解决方案概述 为了满足题目需求,我们需要设计一个能够处理带权无向图或者有向图的程序,并且支持寻找既是最短又花费最少的路径。下面提供了一个完整的C++版本代码示例,其中包含了详细的注释以便于理解和调试。 ```cpp #include <iostream> #include <vector> #include <queue> #include <climits> using namespace std; struct Edge { int to; // 边指向的目标顶点编号 int distance; // 距离权重 int cost; // 过路费权重 }; // 定义优先队列中的比较函数,按照 (当前累计的距离, 当前累计的成本) 排序 struct CompareNode { bool operator()(const pair<int, pair<long long, long long>> &a, const pair<int, pair<long long, long long>> &b) { if (a.second.first != b.second.first) return a.second.first > b.second.first; else return a.second.second > b.second.second; } }; int main() { int n, m, startCity, endCity; cin >> n >> m >> startCity >> endCity; vector<vector<Edge>> graph(n + 1); // 图存储结构,索引从1开始计数 while (m--) { // 输入边的信息 int u, v, d, c; cin >> u >> v >> d >> c; graph[u].push_back({v, d, c}); graph[v].push_back({u, d, c}); // 如果是无向图则加上反方向的边 } // 初始化状态数组 vector<pair<long long, long long>> distCost(n + 1, {LLONG_MAX, LLONG_MAX}); priority_queue< pair<int, pair<long long, long long>>, vector<pair<int, pair<long long, long long>>>, CompareNode> pq; distCost[startCity] = {0, 0}; pq.push({startCity, {0, 0}}); while (!pq.empty()) { auto current = pq.top(); pq.pop(); int node = current.first; long long curDist = current.second.first; long long curCost = current.second.second; if (curDist > distCost[node].first || (curDist == distCost[node].first && curCost > distCost[node].second)) continue; for (auto &edge : graph[node]) { int nextNode = edge.to; long long newDistance = curDist + edge.distance; long long newCost = curCost + edge.cost; if (newDistance < distCost[nextNode].first || (newDistance == distCost[nextNode].first && newCost < distCost[nextNode].second)) { distCost[nextNode] = {newDistance, newCost}; pq.push({nextNode, {newDistance, newCost}}); } } } cout << "Shortest Distance: " << distCost[endCity].first << endl; cout << "Minimum Cost: " << distCost[endCity].second << endl; return 0; } ``` 上述代码实现了带有双重优化条件下的Dijkstra算法变体——即当存在多条相同长度的路径时选择成本最低者作为最终结果。 --- #### 关键概念解析 1. **数据结构的选择** 使用`priority_queue`配合自定义比较器可以高效地选取下一个待访问结点,从而减少不必要的冗余操作。 2. **状态转移方程** 对于每一个可能到达的新位置\( \text{next} \),更新它的最优解为\(\min (\text{dist}[node]+\text{distance}, \text{cost}[node]+\text{fee})\) ,这里需要注意的是只有更优的情况下才会触发新的迭代过程。 3. **边界情况考虑** 特殊情况下如输入的城市之间不存在任何连接关系,则应返回错误提示或特殊标记表明不可达性。 --- ### 总结 综上所述,在面对类似于PTA平台提出的“旅游规划”等问题时,运用改进版的Dijkstra算法不仅能满足基本功能需求还能兼顾额外约束条件的要求。此方法具有较高的实用价值并且易于维护修改适应不同场景的变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值