卖木头块(Lc2312)——动态规划

文章介绍了一种算法,用于确定如何切割矩形木块以获取最大收益,通过比较不同尺寸木块的切割组合来实现。
摘要由CSDN通过智能技术生成

给你两个整数 m 和 n ,分别表示一块矩形木块的高和宽。同时给你一个二维整数数组 prices ,其中 prices[i] = [hi, wi, pricei] 表示你可以以 pricei 元的价格卖一块高为 hi 宽为 wi 的矩形木块。

每一次操作中,你必须按下述方式之一执行切割操作,以得到两块更小的矩形木块:

  • 沿垂直方向按高度 完全 切割木块,或
  • 沿水平方向按宽度 完全 切割木块

在将一块木块切成若干小木块后,你可以根据 prices 卖木块。你可以卖多块同样尺寸的木块。你不需要将所有小木块都卖出去。你 不能 旋转切好后木块的高和宽。

请你返回切割一块大小为 m x n 的木块后,能得到的 最多 钱数。

注意你可以切割木块任意次。

示例 1:

输入:m = 3, n = 5, prices = [[1,4,2],[2,2,7],[2,1,3]]
输出:19
解释:上图展示了一个可行的方案。包括:
- 2 块 2 x 2 的小木块,售出 2 * 7 = 14 元。
- 1 块 2 x 1 的小木块,售出 1 * 3 = 3 元。
- 1 块 1 x 4 的小木块,售出 1 * 2 = 2 元。
总共售出 14 + 3 + 2 = 19 元。
19 元是最多能得到的钱数。

示例 2:

输入:m = 4, n = 6, prices = [[3,2,10],[1,4,2],[4,1,3]]
输出:32
解释:上图展示了一个可行的方案。包括:
- 3 块 3 x 2 的小木块,售出 3 * 10 = 30 元。
- 1 块 1 x 4 的小木块,售出 1 * 2 = 2 元。
总共售出 30 + 2 = 32 元。
32 元是最多能得到的钱数。
注意我们不能旋转 1 x 4 的木块来得到 4 x 1 的木块。

提示:

  • 1 <= m, n <= 200
  • 1 <= prices.length <= 2 * 104
  • prices[i].length == 3
  • 1 <= hi <= m
  • 1 <= wi <= n
  • 1 <= pricei <= 106
  • 所有 (hi, wi) 互不相同 。

问题简要描述:返回能得到的最多钱数 

细节阐述:

  1.  d[i][j] 表示高为 i,宽为 j 的木块的价格,f[i][j] 表示一块高为 i,宽为 j 的木块切割后能得到的最多钱数

Java

class Solution {
    public long sellingWood(int m, int n, int[][] prices) {
        int[][] d = new int[m + 1][n + 1];
        long[][] f = new long[m + 1][n + 1];
        for (int[] p : prices) {
            d[p[0]][p[1]] = p[2];
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                f[i][j] = d[i][j];
                for (int k = 1; k < i; k++) {
                    f[i][j] = Math.max(f[i][j], f[k][j] + f[i - k][j]);
                }
                for (int k = 1; k < j; k++) {
                    f[i][j] = Math.max(f[i][j], f[i][k] + f[i][j - k]);
                }
            }
        }
        return f[m][n];
    }
}

 Python3

class Solution:
    def sellingWood(self, m: int, n: int, prices: List[List[int]]) -> int:
        d = defaultdict(dict)
        for h, w, p in prices:
            d[h][w] = p
        f = [[0] * (n + 1) for _ in range(m + 1)]
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                f[i][j] = d[i].get(j, 0)
                for k in range(1, i):
                    f[i][j] = max(f[i][j], f[k][j] + f[i - k][j])
                for k in range(1, j):
                    f[i][j] = max(f[i][j], f[i][k] + f[i][j - k])
        return f[m][n]     

TypeScript

function sellingWood(m: number, n: number, prices: number[][]): number {
    let d = Array.from({length: m + 1}, () => Array(n + 1).fill(0));
    let f = Array.from({length: m + 1}, () => Array(n + 1).fill(0));
    for (const [h, w, p] of prices) {
        d[h][w] = p;
    }
    for (let i = 1; i <= m; i++) {
        for (let j = 1; j <= n; j++) {
            f[i][j] = d[i][j];
            for (let k = 1; k < i; k++) {
                f[i][j] = Math.max(f[i][j], f[k][j] + f[i - k][j]);
            }
            for (let k = 1; k < j; k++) {
                f[i][j] = Math.max(f[i][j], f[i][k] + f[i][j - k]);
            }
        }
    }
    return f[m][n];  
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值