牛客挑战赛47 F 简单题(莫比乌斯反演)

牛客挑战赛47 F 简单题(莫比乌斯反演)

在这里插入图片描述

题解

当 g c d ( i , j ) > 1 时: μ ( i j ) 中包含平方因子 g c d ( i , j ) ,此时 μ ( i j ) = 0 ,因此只需枚举 g c d ( i , j ) = 1 的情况: 当gcd(i,j)>1时:\mu(ij)中包含平方因子gcd(i,j),此时\mu(ij)=0,因此只需枚举gcd(i,j)=1的情况: gcd(i,j)>1时:μ(ij)中包含平方因子gcd(i,j),此时μ(ij)=0,因此只需枚举gcd(i,j)=1的情况:
∑ i = 1 n ∑ j = 1 m φ ( i j ) μ ( i j ) [ g c d ( i , j ) = = 1 ] \sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\mu(ij)[gcd(i,j)==1] i=1nj=1mφ(ij)μ(ij)[gcd(i,j)==1] 由积性函数的性质可得:当 g c d ( i , j ) = 1 时: 由积性函数的性质可得:当gcd(i,j)=1时: 由积性函数的性质可得:当gcd(i,j)=1时: φ ( i j ) = φ ( i ) φ ( j ) , μ ( i j ) = μ ( i ) μ ( j ) \varphi(ij)=\varphi(i)\varphi(j),\mu(ij)=\mu(i)\mu(j) φ(ij)=φ(i)φ(j)μ(ij)=μ(i)μ(j) ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) μ ( i ) μ ( j ) [ g c d ( i , j ) = = 1 ] \sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(i)\varphi(j)\mu(i)\mu(j)[gcd(i,j)==1] i=1nj=1mφ(i)φ(j)μ(i)μ(j)[gcd(i,j)==1] = ∑ i = 1 n ∑ j = 1 m φ ( i ) φ ( j ) μ ( i ) μ ( j ) ∑ d ∣ g c d ( i , j ) μ ( d ) =\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(i)\varphi(j)\mu(i)\mu(j)\sum_{d|gcd(i,j)}\mu(d) =i=1nj=1mφ(i)φ(j)μ(i)μ(j)dgcd(i,j)μ(d) = ∑ i = 1 n φ ( i ) μ ( i ) ∑ j = 1 m φ ( j ) μ ( j ) ∑ d ∣ i , d ∣ j μ ( d ) =\sum_{i=1}^{n}\varphi(i)\mu(i)\sum_{j=1}^{m}\varphi(j)\mu(j)\sum_{d|i,d|j}\mu(d) =i=1nφ(i)μ(i)j=1mφ(j)μ(j)di,djμ(d) = ∑ d = 1 m i n ( n , m ) μ ( d ) ( ∑ i = 1 n φ ( i ) μ ( i ) [ d ∣ i ] ) ( ∑ j = 1 m φ ( j ) μ ( j ) [ d ∣ j ] ) =\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{i=1}^{n}\varphi(i)\mu(i)[d|i])(\sum_{j=1}^{m}\varphi(j)\mu(j)[d|j]) =d=1min(n,m)μ(d)(i=1nφ(i)μ(i)[di])(j=1mφ(j)μ(j)[dj])
令 f ( d ) = ∑ i = 1 n φ ( i ) μ ( i ) [ d ∣ i ] , g ( d ) = ∑ i = 1 m φ ( i ) μ ( i ) [ d ∣ i ] ,最后就可以化简成: 令f(d)=\sum_{i=1}^{n}\varphi(i)\mu(i)[d|i],g(d)=\sum_{i=1}^{m}\varphi(i)\mu(i)[d|i],最后就可以化简成: f(d)=i=1nφ(i)μ(i)[di]g(d)=i=1mφ(i)μ(i)[di],最后就可以化简成: ∑ d = 1 m i n ( n , m ) μ ( d ) f ( d ) g ( d ) \sum_{d=1}^{min(n,m)}\mu(d)f(d)g(d) d=1min(n,m)μ(d)f(d)g(d)
我们首先筛出函数 φ 和 μ ,此时如果暴力枚举 d ,然后 f ( d ) 和 g ( d ) ,时间复杂度为 O ( n l o g n ) ,会 T ,但是我们观察到函数 f 和 g 的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数 f 和 g ,再来枚举 d ,这样可以优化到 O ( n l o g l o g n ) ,就可以过了 我们首先筛出函数\varphi和\mu,此时如果暴力枚举d,然后f(d)和g(d),时间复杂度为O(nlogn),会T,但是我们观察到函数f和g的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数f和g,再来枚举d,这样可以优化到O(nloglogn),就可以过了 我们首先筛出函数φμ,此时如果暴力枚举d,然后f(d)g(d),时间复杂度为O(nlogn),会T,但是我们观察到函数fg的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数fg,再来枚举d,这样可以优化到O(nloglogn),就可以过了

代码

#include<iostream>
using namespace std;
using uint = unsigned int;
const int N = 2e7 + 5;
int T, n, m, p[N], phi[N], mu[N], cnt;
bool vis[N]; uint f[N], g[N];
void get(int n) {
    phi[1] = 1, mu[1] = 1;
    for(int i = 2; i <= n; i++) {
        if(!vis[i]) {
            p[cnt++] = i;
            phi[i] = i - 1;
            mu[i] = -1;
        }
        for(int j = 0; p[j] <= n / i; j++) {
            vis[i * p[j]] = 1;
            if(i % p[j] == 0) {
                phi[i * p[j]] = phi[i] * p[j];
                break;
            }
            phi[i * p[j]] = phi[i] * (p[j] - 1);
            mu[i * p[j]] = -mu[i];
        }
    }
}
int main() {
    cin >> T;
    get(N - 5);
    while(T--) {
        cin >> n >> m;
        for(int i = 1; i <= n; i++) f[i] = uint(phi[i] * mu[i]);
        for(int i = 1; i <= m; i++) g[i] = uint(phi[i] * mu[i]);
        for(int i = 0; i < cnt && p[i] <= n; i++)
            for(int j = n / p[i]; j; j--) f[j] += f[j * p[i]];
        for(int i = 0; i < cnt && p[i] <= m; i++)
            for(int j = m / p[i]; j; j--) g[j] += g[j * p[i]];
        uint res = 0;
        for(int i = 1; i <= min(n, m); i++)
            res += mu[i] * f[i] * g[i];
        cout << res << endl;
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值