牛客挑战赛47 F 简单题(莫比乌斯反演)
题解
当
g
c
d
(
i
,
j
)
>
1
时:
μ
(
i
j
)
中包含平方因子
g
c
d
(
i
,
j
)
,此时
μ
(
i
j
)
=
0
,因此只需枚举
g
c
d
(
i
,
j
)
=
1
的情况:
当gcd(i,j)>1时:\mu(ij)中包含平方因子gcd(i,j),此时\mu(ij)=0,因此只需枚举gcd(i,j)=1的情况:
当gcd(i,j)>1时:μ(ij)中包含平方因子gcd(i,j),此时μ(ij)=0,因此只需枚举gcd(i,j)=1的情况:
∑
i
=
1
n
∑
j
=
1
m
φ
(
i
j
)
μ
(
i
j
)
[
g
c
d
(
i
,
j
)
=
=
1
]
\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\mu(ij)[gcd(i,j)==1]
i=1∑nj=1∑mφ(ij)μ(ij)[gcd(i,j)==1]
由积性函数的性质可得:当
g
c
d
(
i
,
j
)
=
1
时:
由积性函数的性质可得:当gcd(i,j)=1时:
由积性函数的性质可得:当gcd(i,j)=1时:
φ
(
i
j
)
=
φ
(
i
)
φ
(
j
)
,
μ
(
i
j
)
=
μ
(
i
)
μ
(
j
)
\varphi(ij)=\varphi(i)\varphi(j),\mu(ij)=\mu(i)\mu(j)
φ(ij)=φ(i)φ(j),μ(ij)=μ(i)μ(j)
∑
i
=
1
n
∑
j
=
1
m
φ
(
i
)
φ
(
j
)
μ
(
i
)
μ
(
j
)
[
g
c
d
(
i
,
j
)
=
=
1
]
\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(i)\varphi(j)\mu(i)\mu(j)[gcd(i,j)==1]
i=1∑nj=1∑mφ(i)φ(j)μ(i)μ(j)[gcd(i,j)==1]
=
∑
i
=
1
n
∑
j
=
1
m
φ
(
i
)
φ
(
j
)
μ
(
i
)
μ
(
j
)
∑
d
∣
g
c
d
(
i
,
j
)
μ
(
d
)
=\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(i)\varphi(j)\mu(i)\mu(j)\sum_{d|gcd(i,j)}\mu(d)
=i=1∑nj=1∑mφ(i)φ(j)μ(i)μ(j)d∣gcd(i,j)∑μ(d)
=
∑
i
=
1
n
φ
(
i
)
μ
(
i
)
∑
j
=
1
m
φ
(
j
)
μ
(
j
)
∑
d
∣
i
,
d
∣
j
μ
(
d
)
=\sum_{i=1}^{n}\varphi(i)\mu(i)\sum_{j=1}^{m}\varphi(j)\mu(j)\sum_{d|i,d|j}\mu(d)
=i=1∑nφ(i)μ(i)j=1∑mφ(j)μ(j)d∣i,d∣j∑μ(d)
=
∑
d
=
1
m
i
n
(
n
,
m
)
μ
(
d
)
(
∑
i
=
1
n
φ
(
i
)
μ
(
i
)
[
d
∣
i
]
)
(
∑
j
=
1
m
φ
(
j
)
μ
(
j
)
[
d
∣
j
]
)
=\sum_{d=1}^{min(n,m)}\mu(d)(\sum_{i=1}^{n}\varphi(i)\mu(i)[d|i])(\sum_{j=1}^{m}\varphi(j)\mu(j)[d|j])
=d=1∑min(n,m)μ(d)(i=1∑nφ(i)μ(i)[d∣i])(j=1∑mφ(j)μ(j)[d∣j])
令
f
(
d
)
=
∑
i
=
1
n
φ
(
i
)
μ
(
i
)
[
d
∣
i
]
,
g
(
d
)
=
∑
i
=
1
m
φ
(
i
)
μ
(
i
)
[
d
∣
i
]
,最后就可以化简成:
令f(d)=\sum_{i=1}^{n}\varphi(i)\mu(i)[d|i],g(d)=\sum_{i=1}^{m}\varphi(i)\mu(i)[d|i],最后就可以化简成:
令f(d)=∑i=1nφ(i)μ(i)[d∣i],g(d)=∑i=1mφ(i)μ(i)[d∣i],最后就可以化简成:
∑
d
=
1
m
i
n
(
n
,
m
)
μ
(
d
)
f
(
d
)
g
(
d
)
\sum_{d=1}^{min(n,m)}\mu(d)f(d)g(d)
d=1∑min(n,m)μ(d)f(d)g(d)
我们首先筛出函数
φ
和
μ
,此时如果暴力枚举
d
,然后
f
(
d
)
和
g
(
d
)
,时间复杂度为
O
(
n
l
o
g
n
)
,会
T
,但是我们观察到函数
f
和
g
的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数
f
和
g
,再来枚举
d
,这样可以优化到
O
(
n
l
o
g
l
o
g
n
)
,就可以过了
我们首先筛出函数\varphi和\mu,此时如果暴力枚举d,然后f(d)和g(d),时间复杂度为O(nlogn),会T,但是我们观察到函数f和g的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数f和g,再来枚举d,这样可以优化到O(nloglogn),就可以过了
我们首先筛出函数φ和μ,此时如果暴力枚举d,然后f(d)和g(d),时间复杂度为O(nlogn),会T,但是我们观察到函数f和g的形式就是狄利克雷后缀和的形式,所以可以用狄利克雷后缀和预处理出来函数f和g,再来枚举d,这样可以优化到O(nloglogn),就可以过了
代码
#include<iostream>
using namespace std;
using uint = unsigned int;
const int N = 2e7 + 5;
int T, n, m, p[N], phi[N], mu[N], cnt;
bool vis[N]; uint f[N], g[N];
void get(int n) {
phi[1] = 1, mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]) {
p[cnt++] = i;
phi[i] = i - 1;
mu[i] = -1;
}
for(int j = 0; p[j] <= n / i; j++) {
vis[i * p[j]] = 1;
if(i % p[j] == 0) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
mu[i * p[j]] = -mu[i];
}
}
}
int main() {
cin >> T;
get(N - 5);
while(T--) {
cin >> n >> m;
for(int i = 1; i <= n; i++) f[i] = uint(phi[i] * mu[i]);
for(int i = 1; i <= m; i++) g[i] = uint(phi[i] * mu[i]);
for(int i = 0; i < cnt && p[i] <= n; i++)
for(int j = n / p[i]; j; j--) f[j] += f[j * p[i]];
for(int i = 0; i < cnt && p[i] <= m; i++)
for(int j = m / p[i]; j; j--) g[j] += g[j * p[i]];
uint res = 0;
for(int i = 1; i <= min(n, m); i++)
res += mu[i] * f[i] * g[i];
cout << res << endl;
}
return 0;
}