问题描述
疫情尚未结束,严防疫情反复。为了做好疫情防控工作,国内设置了地区风险等级,对于中高风险地区的人员采取限制移动、居家隔离等手段。
为了研究疫情防控对于跨地区交通运输的影响,假设现在有 N 个机场,M 条航线,每天都会新增一个防控地区,一个防控地区会导致一个机场无法正常运作,航线也自然无法正常运行,每天会有 Qi 对旅客从 Xi 机场前往 Yi 机场,请计算有多少对旅客会受到影响无法完成行程。
旅客只要能直达或通过若干次中转,且乘坐的所有航线的出发和到达机场都正常运作,即视作可完成行程。
输入格式:
输入第一行是三个整数 N,M,D (1≤N≤5×10^4, 1≤M≤2×10^5, 1≤D≤10^3), 表示机场数、航线数以及新增防控地区的天数。
接下来首先有 M 行,每行给出空格分隔的两个数字 A 和 B,表示编号为 A 和 B 的机场之间有一条航线。航线是双向的,机场编号从 1 到 N。
然后是 D 块输入,每块输入内第一行为空格分隔的两个整数 C 和 Q (1≤Q≤10^3),表示新增机场编号为 C 所在的城市为防控地区,今天有 Q 段行程。数据保证新增的城市之前一定不是防控地区。
接下来的 Q 行,每行是空格分隔的两个数字 X 和 Y,表示编号为 X 和 Y 的机场的一段行程。行程有可能包括之前就已经成为防控地区的城市。
输出格式:
对于每天的询问,请在一行中输出在新增了一个防控地区后当天的行程有多少不能成行。
输入样例:
5 5 3
1 2
1 3
1 5
2 5
3 4
4 3
1 3
1 4
2 3
5 3
3 4
2 3
3 5
1 3
2 3
2 5
3 4
输出样例:
1
2
3
题意:
给定一无向图,n个点,m条边。d次询问,每次询问都会减少一个点c,并有q次查询,查询a能否到b最后输出每次询问,a无法到b的总个数。
思路:
题目的数据量让我们没法每次边删点边查询2点有公共父节点,也就是无法在线正向操作。
因此我们反向思考下,逆序操作。先顺序将每个删除点和查询都存下来。然后先删除要
删除的所有点,再倒着往里加点,顺便把询问处理掉。这样我们就可以边加点边查询操作。
参考代码:
#include <bits/stdc++.h>
#define io ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define LL long long
#define PII pair<int, int>
#define PIII pair<int, PII>
#define PSI pair<string, int>
#define PIIS pair<int, pair<int, string>>
#define PDD pair<double, double>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5 + 5;
const int M = 1e3+5;
const int mod = 1e9 + 7;
const int add = 1e6;
int t, n, m,d;
int p[N]; //第i天删除的点
int fa[N]; //父节点
int ans[N]; //统计第i天无法到达的人数
bool vis[N]; //标记i点是否被删除
vector<int>ma[N]; //双向边
vector<PII>road[N]; //d天的路途
int find(int x)
{
return x == fa[x] ? x : (fa[x] = find(fa[x]));
}
void join (int a,int b)
{
a=find(a);
b=find(b);
if(a!=b)fa[b]=a;
}
int main()
{
io;
cin>>n>>m>>d;
int a,b,c,q;
for(int i=1;i<=n;i++)fa[i]=i;
for(int i=0;i<m;i++)
{
cin>>a>>b;
ma[a].push_back(b);
ma[b].push_back(a);
}
for(int i=1;i<=d;i++)
{
cin>>c>>q;
p[i]=c;
vis[c]=1;
while(q--)
{
cin>>a>>b;
road[i].push_back({a,b});
}
}
//删边 ,当2个点均未被删除的时候,合并2点。
for(int i=1;i<=n;++i)
{
if(!vis[i])
{
for(auto u:ma[i])
{
if(!vis[u])join(i,u);
}
}
}
//逆序操作,查询完第i天后,将i天的点有关的边加上
for(int i=d;i>=1;i--)
{
//查询两点是否能够到达
for(auto val:road[i])
{
int l=find(val.first);
int r=find(val.second);
if(l!=r)ans[i]++;
}
//加上当前点的相关边,需要保证另外一个点也未被删除
vis[p[i]]=0;
for(auto u:ma[p[i]])
{
if(!vis[u])
{
join(u,p[i]);
}
}
}
//输出结果
for(int i=1;i<=d;i++)cout<<ans[i]<<"\n";
return 0;
}