Openjudge 抓住那头牛

目录

抓住那头牛

要求:

描述:

输入:

输出:

样例输入:

样例输出:

思路分析:

最终代码:


抓住那头牛

要求:

总时间限制: 2000ms

内存限制: 65536kB

描述:

 农夫知道一头牛的位置,想要抓住它。农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000)。农夫有两种移动方式:

1、从X移动到X-1或X+1,每次移动花费一分钟

2、从X移动到2*X,每次移动花费一分钟

假设牛没有意识到农夫的行动,站在原地不动。农夫最少要花多少时间才能抓住牛?

输入:

两个整数,N和K

输出:

 一个整数,农夫抓到牛所要花费的最小分钟数

样例输入:

5 17

样例输出:

4

思路分析:

第一眼看到这个题目的时候,一个最先可能想到的方法是贪心法,看一看哪种移动方式移动后离目标更近就采用哪种. 乍一看这个思路是没问题的,但是仔细思考一些corner case,就会发现类似这样的例子:

N=6, K=10的情况:局部最优是接下来走到2*N=12处,再利用两次-1即可;但是整体最优是先-1再*2,这样只需要两次就可以到达目标.

所以在这种情况下,一般的贪心法就失效了,递归也显得不是很方便,那么我们就剩下一个策略:广度优先搜索.

在实现广度优先搜索的时候,要注意的几点是:

1)利用一个大的bool数组来判断一个点是否被走过.

2)一定要判断接下来走的这一步是否在0~100000的范围之内,以防数组越界.

最终代码:

#include<iostream>
#include<queue>
#include<vector>
using namespace std;
static bool Axis[100005]={};
static int cnt=0;
inline bool InRange(int x){ return x>=0&&x<=100000; }
int main(){
    queue<int> q;
    vector<int> temp;
    int N, K;
    scanf("%d%d", &N, &K);
    Axis[N]=true;
    q.push(N);
    while(!Axis[K]){
        while(!q.empty()){
            temp.push_back(q.front());
            q.pop();
        }
        int len=temp.size();
        for(int i=0;i<len;i++){
            if(InRange(temp[i]-1)&&!Axis[temp[i]-1]){
                q.push(temp[i]-1); 
                Axis[temp[i]-1]=true;
            }
            if(InRange(temp[i]+1)&&!Axis[temp[i]+1]){
                q.push(temp[i]+1); 
                Axis[temp[i]+1]=true;
            }
            if(InRange(2*temp[i])&&!Axis[temp[i]*2]){
                q.push(temp[i]*2); 
                Axis[2*temp[i]]=true;
            }
        }
        cnt++;
        temp.clear();
    }
    printf("%d\n",cnt);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值