LeetCode:283.移动零——简单

题目:
283.移动零:
给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。

示例:

输入: [0,1,0,3,12]
输出: [1,3,12,0,0]

说明:

  1. 必须在原数组上操作,不能拷贝额外的数组。
  2. 尽量减少操作次数。

解题思路
list.remove() 移除列表中第一个匹配项,list.append() 在列表末尾添加元素。
遍历列表,每查找到列表中的0元素,就将其移除,并计数,遍历结束后,列表仅剩保持原顺序的非0元素。然后再列表末尾添加相应个数的0元素。

代码1:while循环

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        count = 0
        while 0 in nums:
            count += 1
            nums.remove(0)
        while count != 0:
            nums.append(0)
            count -= 1

代码2:for循环

class Solution:
    def moveZeroes(self, nums: List[int]) -> None:
        """
        Do not return anything, modify nums in-place instead.
        """
        n = nums.count(0)
        for i in range(n):
            nums.remove(0)
            nums.append(0)

运行结果:
在这里插入图片描述

KMP算法是一种字符串匹配算法,用于在一个文本串S内查找一个模式串P的出现位置。它的时间复杂度为O(n+m),其n为文本串的长度,m为模式串的长度。 KMP算法的核心思想是利用已知信息来避免不必要的字符比较。具体来说,它维护一个next数组,其next[i]表示当第i个字符匹配失败时,下一次匹配应该从模式串的第next[i]个字符开始。 我们可以通过一个简单的例子来理解KMP算法的思想。假设文本串为S="ababababca",模式串为P="abababca",我们想要在S查找P的出现位置。 首先,我们可以将P的每个前缀和后缀进行比较,得到next数组: | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | --- | - | - | - | - | - | - | - | - | | P | a | b | a | b | a | b | c | a | | next| 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 接下来,我们从S的第一个字符开始匹配P。当S的第七个字符和P的第七个字符匹配失败时,我们可以利用next[6]=4,将P向右移动4个字符,使得P的第五个字符与S的第七个字符对齐。此时,我们可以发现P的前五个字符和S的前五个字符已经匹配成功了。因此,我们可以继续从S的第六个字符开始匹配P。 当S的第十个字符和P的第八个字符匹配失败时,我们可以利用next[7]=1,将P向右移动一个字符,使得P的第一个字符和S的第十个字符对齐。此时,我们可以发现P的前一个字符和S的第十个字符已经匹配成功了。因此,我们可以继续从S的第十一个字符开始匹配P。 最终,我们可以发现P出现在S的第二个位置。 下面是KMP算法的C++代码实现:
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vicky__3021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值