信息熵与信息增益——python

任务描述

本关任务:根据本关所学知识,完成calcInfoEntropy函数,calcHDA函数以及calcInfoGain函数。

相关知识

为了完成本关任务,你需要掌握:

  • 信息熵
  • 条件熵
  • 信息增益

信息熵
信息是个很抽象的概念。人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少。比如一本五十万字的中文书到底有多少信息量。

直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题。信息熵这个词是香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信源的不确定性越大,信息熵也越大。

在这里插入图片描述
从这个公式也可以看出,如果概率是0或者是1的时候,熵就是0。(因为这种情况下随机变量的不确定性是最低的),那如果概率是0.5也就是五五开的时候,此时熵达到最大,也就是1。(就像扔硬币,你永远都猜不透你下次扔到的是正面还是反面,所以它的不确定性非常高)。所以呢,熵越大,不确定性就越高

条件熵
在实际的场景中,我们可能需要研究数据集中某个特征等于某个值时的信息熵等于多少,这个时候就需要用到条件熵。条件熵I(X|A)表示特征A为某个值的条件下,类别为X的熵。条件熵的计算公式如下:
在这里插入图片描述
当然条件熵的一个性质也熵的性质一样,概率越确定,条件熵就越小,概率越五五开,条件熵就越大。

信息增益
现在已经知道了什么是熵,什么是条件熵。接下来就可以看看什么是信息增益了。所谓的信息增益就是表示我已知条件X后能得到信息Y的不确定性的减少程度。

就好比,我在玩读心术。你心里想一件东西,我来猜。我已开始什么都没问你,我要猜的话,肯定是瞎猜。这个时候我的熵就非常高。然后我接下来我会去试着问你是非题,当我问了是非题之后,我就能减小猜测你心中想到的东西的范围,这样其实就是减小了我的熵。那么我熵的减小程度就是我的信息增益。

所以信息增益如果套上机器学习的话就是,如果把特征A对训练集D的信息增益记为g(D, A)的话,那么g(D, A)的计算公式就是:
在这里插入图片描述
为了更好的解释熵,条件熵,信息增益的计算过程,下面通过示例来描述。假设我现在有这一个数据集,第一列是编号,第二列是性别,第三列是活跃度,第四列是客户是否流失的标签(0:表示未流失,1:表示流失)。

编号性别活跃度是否流失
10
20
31
40
50
60
71
80
91
100
110
121
131
140
150

假如要算性别和活跃度这两个特征的信息增益的话,首先要先算总的熵和条件熵。总的熵其实非常好算,就是把标签作为随机变量X。上表中标签只有两种(0和1)因此随机变量X的取值只有0或者1。所以要计算熵就需要先分别计算标签为0的概率和标签为1的概率。从表中能看出标签为0的数据有10条,所以标签为0的概率等于2/3。标签为1的概率为1/3。所以熵为:
在这里插入图片描述
接下来就是条件熵的计算,以性别为男的熵为例。表格中性别为男的数据有8条,这8条数据中有3条数据的标签为1,有5条数据的标签为0。所以根据条件熵的计算公式能够得出该条件熵为:
在这里插入图片描述
根据上述的计算方法可知,总熵为:
在这里插入图片描述
性别为男的熵为:
在这里插入图片描述
性别为女的熵为:
在这里插入图片描述
活跃度为低的熵为:
在这里插入图片描述
活跃度为中的熵为:
在这里插入图片描述
活跃度为高的熵为:
在这里插入图片描述
现在有了总的熵和条件熵之后就能算出性别和活跃度这两个特征的信息增益了。

**性别的信息增益=总的熵-(8/15)性别为男的熵-(7/15)性别为女的熵=0.0064

**活跃度的信息增益=总的熵-(6/15)活跃度为高的熵-(5/15)*活跃度为中的熵-(4/15)活跃度为低的熵=0.6776

那信息增益算出来之后有什么意义呢?回到读心术的问题,为了我能更加准确的猜出你心中所想,我肯定是问的问题越好就能猜得越准!换句话来说我肯定是要想出一个信息增益最大(减少不确定性程度最高)的问题来问你。其实ID3算法也是这么想的。ID3算法的思想是从训练集D中计算每个特征的信息增益,然后看哪个最大就选哪个作为当前结点。然后继续重复刚刚的步骤来构建决策树。

编程要求

根据提示,在右侧编辑器补充代码,完成calcInfoEntropy函数实现计算信息熵、calcHDA函数实现计算条件熵、calcInfoGain函数实现计算信息增益。
calcInfoEntropy函数中的参数:

  • feature:数据集中的特征,类型为ndarray
  • label:数据集中的标签,类型为ndarray

calcHDA函数中的参数:

  • feature:数据集中的特征,类型为ndarray
  • label:数据集中的标签,类型为ndarray
  • index:需要使用的特征列索引,类型为int
  • valueindex所表示的特征列中需要考察的特征值,类型为int

calcInfoGain函数中的参数:

  • feature:测试用例中字典里的feature
  • label:测试用例中字典里的label
  • index:测试用例中字典里的index,即feature部分特征列的索引

测试说明

平台会对你编写的代码进行测试,期望您的代码根据输入来输出正确的信息增益,以下为其中一个测试用例:

测试输入:

{'feature':[[0, 1], [1, 0], [1, 2], [0, 0], [1, 1]], 'label':[0, 1, 0, 0, 1], 'index': 0}

预期输出:

0.419973

提示:
计算log可以使用NumPy中的log2函数

代码

import numpy as np

# 计算信息熵
def calcInfoEntropy(feature, label):
    '''
    计算信息熵
    :param feature:数据集中的特征,类型为ndarray
    :param label:数据集中的标签,类型为ndarray
    :return:信息熵,类型float
    '''

    #*********** Begin ***********#
    label_set = set(label)
    result = 0
    for l in label_set:
        count = 0
        for j in range(len(label)):
            if label[j] == l:
                count += 1
        p = count / len(label)
        result -= p * np.log2(p)
    return result
    #*********** End *************#


# 计算条件熵
def calcHDA(feature, label, index, value):
    '''
    计算信息熵
    :param feature:数据集中的特征,类型为ndarray
    :param label:数据集中的标签,类型为ndarray
    :param index:需要使用的特征列索引,类型为int
    :param value:index所表示的特征列中需要考察的特征值,类型为int
    :return:信息熵,类型float
    '''
    count = 0
    sub_feature = []
    sub_label = []
    for i in range(len(feature)):
        if feature[i][index] == value:
            count += 1
            sub_feature.append(feature[i])
            sub_label.append(label[i])
    pHA = count / len(feature)
    e = calcInfoEntropy(sub_feature, sub_label)
    return pHA * e


def calcInfoGain(feature, label, index):
    '''
    计算信息增益
    :param feature:测试用例中字典里的feature
    :param label:测试用例中字典里的label
    :param index:测试用例中字典里的index,即feature部分特征列的索引
    :return:信息增益,类型float
    '''
    base_e = calcInfoEntropy(feature, label)
    f = np.array(feature)
    f_set = set(f[:, index])
    sum_HDA = 0
    for value in f_set:
        sum_HDA += calcHDA(feature, label, index, value)
    return base_e - sum_HDA
  • 8
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vicky__3021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值