回溯法1|77. 组合
一、回溯理论基础
1.回溯的本质是穷举,穷举所有可能 。递归是一种算法结构,回溯是一种算法思想。回溯算法不是什么高效的算法。
- 回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯算法模板:(回溯算法中函数返回值一般为void)
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
二、77. 组合
- 已经选择的元素个数:path.size();
- 所需需要的元素个数为: k - path.size();
- 列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())
- 在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combine(int n, int k) {
combineHelper(n, k, 1);
return result;
}
public void combineHelper(int n, int k, int startIndex){
if(path.size() == k){
result.add(new ArrayList<>(path));
return;
}
for(int i = startIndex; i <= n - (k - path.size()) + 1; i++){//剪枝优化
path.add(i);
combineHelper(n, k, i + 1);
path.removeLast();
}
}
}