回溯法1|77. 组合|回溯理论基础

文章介绍了回溯法的基本概念,强调其本质是穷举所有可能的解决方案,并提供了一个通用的回溯算法模板。接着,文章详细讨论了LeetCode上的77.组合问题,解释了如何使用回溯法解决该问题,包括终止条件、选择过程以及剪枝优化策略,并给出了具体的Java代码实现。
摘要由CSDN通过智能技术生成

回溯法1|77. 组合

一、回溯理论基础

1.回溯的本质是穷举,穷举所有可能 。递归是一种算法结构,回溯是一种算法思想。回溯算法不是什么高效的算法。

  1. 回溯法,一般可以解决如下几种问题:
  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

回溯算法模板:(回溯算法中函数返回值一般为void)

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

二、77. 组合

题目连接:77. 组合 - 力扣(LeetCode)

  1. 已经选择的元素个数:path.size();
  2. 所需需要的元素个数为: k - path.size();
  3. 列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())
  4. 在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> combine(int n, int k) {
        combineHelper(n, k, 1);
        return result;
    }

    public void combineHelper(int n, int k, int startIndex){
        if(path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }
        for(int i = startIndex; i <= n - (k - path.size()) + 1; i++){//剪枝优化
            path.add(i);
            combineHelper(n, k, i + 1);
            path.removeLast();
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值