实现字符串的匹配问题:
mat[i]是使子串str[0...i]的前缀str[0...k]等于后缀str[i-k...i] (i!=k)的最大的k;
前缀和后缀可以部分重叠,但不能是str[0...i]本身;
a b a b a a
a b a b a a;
mat[4]=2;(ababa的最大前缀是aba);
s[5]!=s[mat[4]+1],所以 aba(mat[5-1]) 不能成为s[5]的前缀的一部分,所以要找能匹配
ababaa的最长前缀,那么就向aba往前寻找,显然是寻找aba的最长前缀 a (mat[2]=0),看
是否能匹配成功,直到匹配成功或者没有最长前缀为止;
因此得出求解mat数组的函数:
void getNext(string &str,int len) //前缀和后缀可以部分重叠,但不能是str[0...i]本身;
{
int j=-1;
mat[0]=-1;
for(int i=1;i<len;++i)
{
while(j!=-1 && str[i]!=str[j+1])
j=mat[j];
if(str[i]==str[j+1])
++j;
mat[i]=j;
}
}
对于判断pattern 字符串是否为 text 文本的子串,例如对于:
pattern="abcabcd";
text="abcdabcabcabcdcs"
已经匹配到了第一个"abcabc",结果匹配最后一位的时候发现pattern中是'd',而text
中是'a',不匹配,那怎么办,直接退回到pattern的第一位吗,明显不用,退回到
pattern已经匹配的子串的最长前缀就可以;根据mat的定义可以明显知道,text后几位
和pattern的前几位是匹配的,当然,这儿的前几位和后几位都是pattern已经匹配的子串的
最长前缀长。那么我们可以得出判断 pattern 字符串是否为 text 文本的子串的算法:
1)定义pattern 的下标j=-1,
2)枚举text的下标从 0 到 n-1;
3)判断j是否不等于-1并且是否text[i]不等于pattern[j+1],如果答案是肯定,就令j=mat[j]
,如此循环下去;
4)只要text[i]==pattern[j+1],就++j;
5)只要j==m-1,说明已经匹配完成,匹配成功。
6)到text 枚举完都没有匹配成功,说明text中不存在子串与pattern相等。
bool KMP_is_substr(string &text,string &pattern,int n,int m)
{
getNext(pattern,m);
int j=-1;
for(int i=0;i<n;++i)
{
while(j!=-1 && text[i]!=pattern[j+1])
j=mat[j];
if(text[i]==pattern[j+1])
++j;
if(j==m-1) //j达到pattern最后一位,匹配成功
return true;
}
return false;
}
考虑text文本中有多少个 pattern 子串;
和判断 pattern 字符串是否为 text 文本的子串的算法差不多的思想;
只是在得到pattern是text的子串的时候,要把j回退到整个pattern字符串的
最长前缀的位置;
int KMP_sum_substr(string &text,string &pattern,int n,int m)
{
getNext(pattern,m);
int j=-1,ans=0;
for(int i=0;i<n;++i)
{
while(j!=-1 && text[i]!=pattern[j+1])
j=mat[j]; //不断回退,直到j==-1或者text[i]==pattern[j+1]
if(text[i]==pattern[j+1])
++j;
if(j==m-1) //pattern是text的子串
{
++ans;
j=mat[j];
}
}
return ans;
}
完整代码:
/**
实现字符串的匹配问题:
mat[i]是使子串str[0...i]的前缀str[0...k]等于后缀str[i-k...i] (i!=k)的最大的k;
前缀和后缀可以部分重叠,但不能是str[0...i]本身;
再编码:
*/
#include <iostream>
#include <string>
using namespace std;
const int maxn=1001;
/**
a b a b a a
a b a b a a;
mat[4]=2;(ababa的最大前缀是aba);
s[5]!=s[mat[4]+1],所以 aba(mat[5-1]) 不能成为s[5]的前缀的一部分,所以要找能匹配
ababaa的最长前缀,那么就向aba往前寻找,显然是寻找aba的最长前缀 a (mat[2]=1),看
是否能匹配成功,直到匹配成功或者没有最长前缀为止;
*/
int mat[maxn]={0}; //mat[i]是使子串str[0...i]的前缀str[0...k]等于后缀str[i-k...i]的最大的k
void getNext(string &str,int len) //前缀和后缀可以部分重叠,但不能是str[0...i]本身;
{
int j=-1;
mat[0]=-1;
for(int i=1;i<len;++i)
{
while(j!=-1 && str[i]!=str[j+1])
j=mat[j];
if(str[i]==str[j+1])
++j;
mat[i]=j;
}
}
/**
对于判断pattern 字符串是否为 text 文本的子串,例如对于:
pattern="abcabcd";
text="abcdabcabcabcdcs"
已经匹配到了第一个"abcabc",结果匹配最后一位的时候发现pattern中是'd',而text
中是'a',不匹配,那怎么办,直接退回到pattern的第一位吗,明显不用,退回到
pattern已经匹配的子串的最长前缀就可以;根据mat的定义可以明显知道,text后几位
和pattern的前几位是匹配的,当然,这儿的前几位和后几位都是pattern已经匹配的子串的
最长前缀长。
那么我们可以得出判断 pattern 字符串是否为 text 文本的子串的算法:
1)定义pattern 的下标j=-1,
2)枚举text的下标从到n-1;
3)判断j是否不等于-1并且是否text[i]不等于pattern[j+1],如果答案是肯定,就令j=mat[j]
,如此循环下去;
4)只要text[i]==pattern[j+1],就++j;
5)只要j==m-1,说明已经匹配完成,匹配成功。
6)到text 枚举完都没有匹配成功,说明text中不存在子串与pattern相等。
*/
bool KMP_is_substr(string &text,string &pattern,int n,int m)
{
getNext(pattern,m);
int j=-1;
for(int i=0;i<n;++i)
{
while(j!=-1 && text[i]!=pattern[j+1])
j=mat[j];
if(text[i]==pattern[j+1])
++j;
if(j==m-1) //j达到pattern最后一位,匹配成功
return true;
}
return false;
}
/**
考虑text文本中有多少个 pattern 子串;
和判断 pattern 字符串是否为 text 文本的子串的算法差不多的思想;
只是在得到pattern是text的子串的时候,要把j回退到整个pattern字符串的
最长前缀的位置;
*/
int KMP_sum_substr(string &text,string &pattern,int n,int m)
{
getNext(pattern,m);
int j=-1,ans=0;
for(int i=0;i<n;++i)
{
while(j!=-1 && text[i]!=pattern[j+1])
j=mat[j]; //不断回退,直到j==-1或者text[i]==pattern[j+1]
if(text[i]==pattern[j+1])
++j;
if(j==m-1) //pattern是text的子串
{
++ans;
j=mat[j];
}
}
return ans;
}
int main()
{
cout << "您是否想比较模式串是否为文本串的子串的问题?\n";
string flag;
while(cin >> flag ,flag == "y" || flag =="Y" || flag =="YES" || flag=="yes" || flag=="Yes")
{
cout << "还请您输入一个文本串及一个模式串:\n";
string text,pattern;
cin >> text >> pattern;
int len1=text.size(),len2=pattern.size();
if(KMP_is_substr(text,pattern,len1,len2))
cout << "pattern is sub_string of text\n";
else
cout << "pattern is not sub_string of text\n";
int ans=KMP_sum_substr(text,pattern,len1,len2);
cout << "pattern has appeared in text " << ans << " times\n";
cout << "您是否还想继续调式模式串是否为文本串的子串的问题?\n";
}
cout << "你是否还想调试一下你写的getNext函数:\n";
while(cin >> flag ,flag == "y" || flag =="Y" || flag =="YES" || flag=="yes" || flag=="Yes")
{
cout << "那还请您输入一个字符:串:\n";
string str;
cin >> str;
int len =str.size();
getNext(str,len);
for(int i=0;i<len;++i)
cout << mat[i] << endl;
cout << "您是否还想继续调式:\n";
}
cout << "Good bye next time!\n";
return 0;
}
当然算法笔记上还给出里一种更为快速的求解字符串匹配的问题:
2)改变nextval数组的含义,nextval[j]的含义就是j+1位匹配失败时,j应该退回的最佳位置
求解mat数组的语句:
if(j==-1||str[i+1]!=str[j+1])
nextval[i]=j;
else
nextval[i]=nextval[j]; //如果两个位置的值相等,直接继承上一个前一个的nextval值
/**
2)改变nextval数组的含义,nextval[j]的含义就是j+1位匹配失败时,j应该退回的最佳位置
*/
/**
#include <iostream>
#include <string>
using namespace std;
const int maxn=1001;
int nextval[maxn]={0}; //nextval[j]的含义就是j+1位匹配失败时,j应该退回的最佳位置
void getNext(string &str,int len);
//bool KMP(string &text,string &pattern,int n,int m);
int KMP(string &text,string &pattern,int n,int m);
int main()
{
string text,pattern;
cin >> text >> pattern;
int len1=text.size(),len2=pattern.size();
// if(KMP(text,pattern,len1,len2))
// cout << "pattern is sub_string of text\n";
int ans=KMP(text,pattern,len1,len2);
cout << "pattern has appeared in text " << ans << " times\n";
return 0;
}
void getNext(string &str,int len)
{
int j=-1;
nextval[0]=-1;
for(int i=1;i<len;++i)
{
while(j!=-1&&str[i]!=str[j+1])
j=nextval[j]; //nextval[j]的含义就是j+1位匹配失败时,j应该退回的最佳位置
if(str[i]==str[j+1])
++j;
if(j==-1||str[i+1]!=str[j+1])
nextval[i]=j;
else
nextval[i]=nextval[j]; //如果两个位置的值相等,直接继承上一个前一个的nextval值
}
}
//bool KMP(string &text,string &pattern,int n,int m)
//{
// int j=-1;
// getNext(pattern,m);
// for(int i=0;i<n;++i)
// {
// while(j!=-1&&text[i]!=pattern[j+1])
// j=mat[j]; //mat数组的含义就是j+1位匹配失败时,j应该退回的位置
//
// if(text[i]==pattern[j+1])
// ++j;
// if(j==m-1)
// return true;
// }
// return false;
//}
int KMP(string &text,string &pattern,int n,int m)
{
int j=-1,ans=0;
getNext(pattern,m);
for(int i=0;i<n;++i)
{
while(j!=-1&&text[i]!=pattern[j+1])
j=nextval[j]; //mat[j]的含义就是j+1位匹配失败时,j应该退回的位置
if(text[i]==pattern[j+1])
++j;
if(j==m-1)
{
++ans;
j=nextval[j];
}
}
return ans;
}
*/