python代码实现Miller-Rabin算法及效率测试

python代码实现Miller-Rabin算法及效率测试

欢迎大家访问我的GitHub博客

https://lunan0320.github.io/

一、算法描述

1、主要思路

把 n-1 写成 n-1=2k*m,其中 m 是一个奇数
随机选取整数 a,使得 1≤a≤n-1

2、伪代码描述

b=am mod n
if b≡1(mod n)
then return True
for i from 0 to k-1
if b≡n-1 *******注意此处写代码的时候需要改成n-1,算法描述的时候可以是-1mod(n)
then return True
else b=b2mod n

二、代码实现

1、Python代码实现过程如下:

import random
import time
def MillerRabin(n):
    if n in {2,3,5,7,11,13}:
        return True
    elif n==1 or n%2==0 or n%3==0 or n%5==0 or n%7==0 or n%11==0 or n%13==0:
        return False

    k=0 #判断向右移动位数
    u=n-1#对u分解
    while u&1==0:
        k=k+1
        u=u>>1
    m=u
    a=random.randint(2,n-1)
    r=pow(a,m,n)
    if r==1:
        return True
    else:
        for j in range(k):
            if r==n-1:
                return True
            else:
                r=pow(r,2,n)
        return False

def gen_Random(length):
    n=random.randint(2**(length-1),2**length)
    return n

input_len=int(input("请输入比特长度(bit):"))
sum=0
count=0
while True:
    count+=1
    n=gen_Random(input_len)
    begin=time.time()
    if MillerRabin(n):
        end=time.time()
        sum+=end-begin
        print(n,"是素数")
        print("随机生成素数总时间",sum,"s")
        print("平均素检测时间:",sum/count,"s")
        break
    end=time.time()
    sum+=end-begin



2、Miller-Rabin素性检测

在这里插入图片描述

3、获得给定长度的随机比特位串

在这里插入图片描述

4、测试效率部分

在这里插入图片描述

三、算法效率测试

实例1、

在这里插入图片描述

实例2、

在这里插入图片描述

实例3、

在这里插入图片描述

实例4、

在这里插入图片描述
此处是随机生成一个2048bit的数字,判断其是否是素数,如果不是就继续生成,继续判断,知道生成一个素数时,去计算此过程平均素性检测时间(不包括生成一个2048bit串的时间)
可见,随机生成一个固定长度的素数的时间是不确定的,但是去判断这个数是否是素数的时间却基本维持在0.003~0.005左右
由此可得,Miller-Rabin算法是有较高的效率的

四、参考文献

[1] [加]Douglas R.Stinson《密码学原理与实践(第三版)》,电子工业 出版社,北京,2016

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Miller-Rabin算法Python实现如下: ``` def is_prime(n, k=10): if n == 2 or n == 3: return True if n <= 1 or n % 2 == 0: return False d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for i in range(k): a = random.randint(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for r in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True ``` 该代码使用了Python的内置函数`pow()`,并使用了随机数生成来提高判断素数的正确性。 ### 回答2: Miller-Rabin算法是一种用于判断一个数是否为质数的算法,它的复杂度比较低,可以处理非常大的数。其原理是利用费马小定理,通过多次随机测试来判断一个数是否为合数。这种方法在理论上并不能保证完全正确,但是概率非常高,可以满足实际需求。 Python是一种非常流行的编程语言,对于实现Miller-Rabin算法非常方便。下面我们给出一个基本的Python实现代码如下: ``` import random def is_prime(n: int, k: int = 10) -> bool: if n in [2, 3]: return True if n == 1 or n % 2 == 0: return False r, s = 0, n - 1 while s % 2 == 0: r += 1 s //= 2 for _ in range(k): a = random.randint(2, n - 2) x = pow(a, s, n) if x == 1 or x == n - 1: continue for __ in range(r - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True ``` 代码中的参数`n`表示待判断的数,`k`表示进行随机测试的次数。在实际使用中,可以根据需要适当调整`k`的值以达到最佳效果。 首先对特殊情况进行判断,若`n`为2或3则返回True;若`n`为1或偶数则返回False。接着通过对`n`进行减一操作,将其变为偶数。然后通过循环将其分解为$r$和$s$两个因子,其中$s$是奇数。随后进行$k$次随机测试。每次测试,随机生成一个整数$a$,并将其幂次方取模。若$a^s\equiv1\pmod n$或$a^s\equiv n-1\pmod n$则说明此次测试没有发现`n`是合数的证据,可以直接进入下一轮测试。否则,将$a^s$不断平方取模$r$次,若其结果为$n-1$则说明此次测试没有发现`n`是合数的证据,可以进入下一轮测试。如果经过$k$次测试仍然没有发现`n`是合数的证据,则可以近似认为`n`是一个质数。 通过上述的Python代码实现,我们可以方便地判断一个数是否为质数,达到了实际应用的需要。在实际使用中,建议针对具体应用场景,对算法参数进行优化,以获得最佳效果。 ### 回答3: Miller-Rabin算法是一种用于判断一个数是否为质数的算法。该算法不需要求出该数的因子,只需要进行一定的判断即可。 Miller-Rabin算法需要随机选择测试因子,根据费马小定理进行测试。如果被测试数n是质数,那么对于任意的a(1<a<n),都有a^(n-1) ≡ 1 mod n。但如果n不是质数,那么大多数a^(n-1) ≢ 1 mod n。 Miller-Rabin算法的核心思想是对于单个测试因子的测试,最多只会出现两种情况:n是合数和n可能是质数。因此,我们使用k个随机测试因子进行测试,如果所有的测试都表明n是质数,那么n就很有可能是质数。一般情况下,k的取值为10-50。 Miller-Rabin算法Python实现如下: ``` import random def is_prime(n, k=50): """判断n是否为质数,k为测试因子个数""" if n <= 3: return n == 2 or n == 3 r, d = 0, n - 1 while d % 2 == 0: r += 1 d //= 2 for _ in range(k): a = random.randrange(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for _ in range(r - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True ``` 代码中的is_prime函数接收两个参数:n表示待判断的数字,k表示测试因子的个数。首先判断n是否小于等于3,如果是则判断该数是否为2或3。如果n大于3,就将n-1写成2^r * d的形式。然后对于每个测试因子a,计算a^d mod n的值,如果等于1或n-1,则判断下一个测试因子。如果不是,则连续进行r-1次平方计算,判断中间是否出现了x^2 ≡ 1 mod n的情况。如果出现则n是合数,否则n有很大可能是质数。 总之,Miller-Rabin算法可以高效地判断一个数是否为质数,主要思想是利用随机选择的测试因子进行判断,并重复多次,以提高判断的准确性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值