Python 大数的质因数分解

肝了一天总算把大数质因数分解搞定了,这篇文章主要涉及了 Pollard rho 算法和试除法

我用了若干个质数的平方来对比这两个算法的性能,发现:

  • 7e5 以上的数用 Pollard rho 算法更快,分解多大的数都不是问题
  • 7e5 以下的数用试除法更快

最终的质因数分解是由这两个算法构成的,主函数的思路是:

  • 当 n > 7e5 时,使用 Miller Rabin 算法判断 n 是不是质数,如果不是:
  1. 使用 Pollard rho 算法求解任意因数 a,并求出 a 对 n 的整除次数(n 更新为整除后的值)
  2. 递归分解出 a 的质因数;如果 n > 1,则递归分解出当前 n 的质因数
  • 当 n <= 7e5 时,使用试除法进行质因数分解

至此涉及到的算法有:试除法,Miller Rabin 素性测试,Pollard rho 因数分解

Miller Rabin 素性测试

对于素数 p 和随机数 a,如果两者互素,根据费马小定理有:

a^{p-1} - 1\equiv 0 \mod p

a 通常取预设的值,如:[2, 325, 9375, 28178, 450775, 9780504, 1795265022]

这时,如果 p 满足上式则很有可能是素数,否则一定是合数

因为素数都是奇数,所以 p - 1 一定是偶数,所以有:

p-1=2^r m, a^{p-1} - 1= a^{2^r m} - 1

a^{p-1} - 1 = (a^m-1) \prod_{i=0}^{r-1}(a^{2^i m}+1) \equiv 0 \mod p

a^{p-1} - 1 可被表示成若干个因子的累乘,如果其中有因子可以被 p 整除,则 a^{p-1} - 1\equiv 0 \mod p 成立

即当满足以下任意式子时,p 通过 a 的素性测试:

a^m \equiv 1 \mod p

a^m \equiv p-1 \mod p

a^{2m} \equiv p-1 \mod p

a^{4m} \equiv p-1 \mod p

......

a^{2^{r-1}m} \equiv p-1 \mod p

为了提高准确率,通常取不同的 a,进行 5 ~ 10 次测试

def miller_rabin(p):
    ''' 素性测试'''
    # 特判 4
    if p <= 4: return p in (2, 3)
    # 对 p-1 进行分解
    pow_2, tmp = 0, p - 1
    while tmp % 2 == 0:
        tmp //= 2
        pow_2 += 1
    # 进行多次素性测试
    for a in (2, 3, 5, 7, 11):
        basic = pow(a, tmp, p)
        # a^m 是 p 的倍数或者满足条件
        if basic in (0, 1, p - 1): continue
        # 进行 r-1 次平方
        for _ in range(1, pow_2):
            basic = basic ** 2 % p
            # 怎样平方都是 1
            if basic == 1: return False
            # 通过 a 的素性测试
            if basic == p - 1: break
        # 未通过 a 的素性测试
        if basic != p - 1: return False
    # 通过所有 a 的素性测试
    return True

Pollard rho 因数分解

我比较菜,就不讲解原理了,具体见这篇文章:Link ~

def pollard_rho(n):
    ''' 求因数: 7e5 以上'''
    # 更新函数
    bias = random.randint(3, n - 1)
    update = lambda i: (i ** 2 + bias) % n
    # 初始值
    x = random.randint(0, n - 1)
    y = update(x)
    # 查找序列环
    while x != y:
        factor = math.gcd(abs(x - y), n)
        # gcd(|x - y|, n) 不为 1 时, 即为答案
        if factor != 1: return factor
        x = update(x)
        y = update(update(y))
    return n

质因数分解

使用继承 collections.Counter 的类,主要是为了记录因数及其幂次,这个类主要有几个函数:

  • count:试除并求出幂次
  • main:主函数
> 7e5Miller Rabin 判素 + Pollard rho 求因数,递归分解因数、剩余部分
≤ 7e5试除法分解
  • try_div:试除法分解质因数

这个类可以当作函数来用,prime_factor(n) 的返回值就是一个字典

class prime_factor(Counter):
    """ 质因数分解
        require: miller_rabin, pollard_rho"""

    def __init__(self, n):
        super().__init__()
        self.main(n, gain=1)

    def count(self, n, fac):
        # 试除并记录幂次
        cnt = 1
        n //= fac
        while n % fac == 0:
            cnt += 1
            n //= fac
        return n, cnt

    def main(self, n, gain):
        # 试除法求解
        if n < 7e5: return self.try_div(n, gain=gain)
        # 米勒罗宾判素
        if miller_rabin(n): return self.update({n: gain})
        # pollard rho 求解因数
        fac = pollard_rho(n)
        n, cnt = self.count(n, fac)
        # 递归求解因数的因数
        self.main(fac, gain=cnt * gain)
        # 递归求解剩余部分
        if n > 1: self.main(n, gain=gain)

    def try_div(self, n, gain=1):
        """ 试除法分解"""
        i, bound = 2, math.isqrt(n)
        while i <= bound:
            if n % i == 0:
                # 计数 + 整除
                n, cnt = self.count(n, i)
                # 记录幂次, 更新边界
                self.update({i: cnt * gain})
                bound = math.isqrt(n)
            i += 1
        if n > 1: self.update({n: gain})
  • 7
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷碧TongZJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值