Miller-Rabin质数测试算法是一种基于随机化的算法,用于判断一个数是否为质数。该算法具有高效性和强健性,通常被用于加密算法中生成大素数。
该算法基于以下两个事实:对于质数 p p p和任意整数 a a a,有 a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod{p} ap−1≡1(modp);对于任意整数 n n n,如果 n n n不是质数,则 n − 1 n-1 n−1可以表示为 2 r d 2^r d 2rd的形式,其中 r ≥ 1 r \geq 1 r≥1, d d d是奇数。因此,我们可以选择一个随机整数 a a a,计算 a d , a 2 d , … , a 2 r − 1 d a^{d}, a^{2d}, \ldots, a^{2^{r-1}d} ad,a2d,…,a2r−1d,如果其中任何一个模 n n n等于 1 1 1,或者等于 n − 1 n-1 n−1,则 n n n可能是质数;否则, n n n一定不是质数。
由于Miller-Rabin质数测试算法具有高效性和强健性,通常被用于生成大素数,特别是在RSA等加密算法中。在实际应用中,一般会对该算法进行多次迭代,以增加正确性的概率。
import random
def is_prime(n, k=5):
# 如果 n <= 1,则返回 False
if n <= 1:
return False
# 检查 n 是否等于小于 100 的质数
small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
if n in small_primes:
return True
for p in small_primes:
if n % p == 0:
return False
# 找到 r 和 d 以满足 n-1 = 2^r * d
r, d = 0, n-1
while d % 2 == 0:
r += 1
d //= 2
# 进行 k 次测试
for i in range(k):
a = random.randint(2, n-2)
x = pow(a, d, n)
if x == 1 or x == n-1:
continue
for j in range(r-1):
x = pow(x, 2, n)
if x == n-1:
break
else:
return False
return True
def generate_prime_number(length):
while True:
# 生成一个长度为 length 的随机奇数
num = random.getrandbits(length)
num |= (1 << length - 1) | 1
# 检查 num 是否为质数
if is_prime(num):
return num
print(generate_prime_number(2048))
该代码中的is_prime函数实现了Miller-Rabin质数测试算法。函数接受两个参数,n表示要测试的数,k表示测试次数。该函数首先检查n是否小于等于1,或者是否能够被小于100的质数整除。如果n不满足这些条件,就找到一个r和d,使得 n − 1 = 2 r ∗ d n-1=2^r * d n−1=2r∗d。然后,它对于 k k k个随机的整数 a a a执行Miller-Rabin测试。如果对于所有的测试 a a a都有 x = 1 x=1 x=1或 x = n − 1 x=n-1 x=n−1,则n很可能是一个质数。如果对于任何一个 a a a,都有 x ≠ 1 x \neq 1 x=1且 x ≠ n − 1 x \neq n-1 x=n−1,则n不是质数。如果在所有测试中都没有发现n不是质数的证据,则n很可能是一个质数。
generate_prime_number函数生成一个长度为length的随机奇数,然后检查它是否为质数。如果是,就返回它;否则,就