植被指数计算方法公式

文章介绍了几种重要的植被指数,包括NDVI、EVI、高光谱归一化植被指数以及比值植被指数、差值植被指数和土壤调整植被指数等,这些指数用于监测植被健康、土壤背景和环境变化。NDVI和EVI是常见的遥感植被指标,而SAVI和MSAVI则通过调整土壤影响来优化植被监测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、归一化植被指数(NDVI)

归一化植被指数(Normal ized Di fference Vegetation Index, 即NDVI )
的计算公式为:
在这里插入图片描述
其中: PNIRPRED分别代表近红外波段和红光波段的反射率NDVI的值介于-1和1之间。

2、增强型植被指数(EVI)

增强型植被指数(Enhanced Vegetation Index, 即EVI )计算公式为:

PNIR、PREDPBLUE分别代表近红外波段、红光波段和蓝光波段的反射率。

3、高光谱归- -化植被指数(Hyp_ NDVI)

对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外
和红光的谱段进行归一化植被指数计算:

4、其他植被指数

(1) 比值植被指数(Ratio Vegetation Index- – RVI)


该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植
被与土壤背景之间的辐射差异。但是RVI对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Difference Vegetation Index–DVI )


该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因
此又被称为环境植被指数(EVI)。

(3)土壤 调整植被指数(Soil-Ad justed Vegetation Index-- SAVI)


其中,L是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确
定,用来减小植被指数对不同土壤反射变化的敏感性。当L=0是,SAVI就是NDVI;
对于中等植被覆盖区,L的值一般接近于。乘法因子(1+L) 主要是用来保证最
后的SAVI值介于-1和1之间。该指数能够降低土壤背景的影响,但可能丢失部
分植被信号,使植被指数偏低。

(4) 修正土壤调整植被指数(Modified Soil-Adjusted Vegetation Index-- MSAVI)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值