第一部分 --- 习题课
1.R1左边那部分空白的高度的计算方法:
在一开始阀门关闭的时候,A和B处的压力是相等的,所以U形管中处处压力相等,液面都是持平的
但是当阀门打开后A和B处的压力就不相等了,此时A处的压力大于B处的压力(伯努利方程),也就是说A会将指示液压下,此时另一边的指示液的高度就会对应上升(在等液面的前提下,下降R1 / 2的话,对面就会上升R1 / 2,此时两液面差就是R1)
中间的U形管中由于充满的是空气,所以压力可以忽略,所以空气两侧的液面的压力相等
1.看到这种涉及到重力的,阻力损失的,百分百要用到伯努利方程(机械能方程),先列一手方程,然后该消的消,消完之后再对计算结果进行分析
1.为什么A截面那只用算R段产生的液柱压强就可以了呢?
这是因为没计算的那段液柱产生的压强和B截面处液柱产生的压强发生了部分重合,直接相互抵消掉了,所以在计算的时候A,B截面的液柱压强都省略掉了这一部分(因为已经被抵消掉了)
第二部分 --- 知识点小结
1.在定态流动系统中,任何流体在任意截面处的质量流量都相等
2.在定态流动系统中,不可压缩流体除了在任意截面处的质量流量都相等外,它在任意截面处的体积流量也相等
1.Pe是有效功率
1.上图中公式的左边第一项是剪应力,右边第一项是粘度
1.抛物线分布值的是层流时的速度梯度分布,u是平均流速,umax是最大流速
1.Re是雷诺数,nanda是摩擦系数
2.湍流的摩擦系数有两种求法:一种是查图法(两个参数查图,还有一种是公式法)
1.静止的时候流体的流速为0,不需要外界做功,且由于静止也没有阻力损失(阻力损失只有在动起来的时候才会表现出来)
2.结合1的条件以及伯努利方程(机械能方程)我们就能够得到流体的静力学基本方程式
第三部分 --- 选择题
1.注意这一题的条件:流体是流动着的,所以不可以使用静力学基本方程,需要我们使用伯努利方程(机械能方程)来找关系 --- 上图中的公式就是通过伯努利方程找到的关系
当阀门开大的时候,阀门造成的局部阻力就会降低
1.水平管 --- 位能为0,等直径管 --- 连续性方程,速度不变,动能不改变
1.首先列出之前得到的R的通式
2.列出管的伯努利方程,将方程进行变形,使其尽可能的往R的通式靠
3.化简完后将得到的式子代入到R的通式中,代入后就能够得到R表示的是什么物理量的变化了
1.取管道中心为基准面,则两个截面到基准面的垂直距离为0(已经在上面了)
1.两个截面之间的位差指的是两个截面之间的垂直距离
2.流动在阻力平方区意味着流体的摩擦系数nanda和雷诺数没有关系
1.敞口截面具有的特点:表压强为0,流速可近似为无
1.A,C,D都是湍流流动出现阻力损失的原因
2.在层流流动的时候管壁粗糙度不会对阻力损失造成影响
第四部分 --- 填空题
注意第二题中的摩擦系数与雷诺数的关系只适用于层流体系
1.阀门开度关小,流量减小,流速降低,雷诺数降低,此时摩擦系数增大,但是摩擦系数的变化都很小,增大的量比不上流速减小的量,所以直管阻力hf降低
2.阀门开度关小,阀门的当量长度增大,此时流速的降低比不上阀门当量长度的增大,所以局部阻力hf' 增大
1.那个求和符号的意思是直管阻力 hf 和 局部阻力 hf' 二者求和
1.列直管阻力的方程时候不要忘了雷诺数也与管径和流速有关
2.管径就是管道的内圆的直径
1.做这一题的时候不要忘了流速也与管径有关
1.阀门关小,流量降低 --- 流量降低,流速降低
流速降低,直管阻力降低,而在1截面和A截面之间只有直管阻力,且gz1不变,所以压强增大
2.根据连续性方程可知,uA = uB ,所以ub也跟着降低,直管阻力也降低,但是!这些降低带来的总影响都比局部阻力(阀门半关)的增大带来的影响小,而gze1不变,所以压强降低